Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Cell ; 184(3): 574-576, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33545033

ABSTRACT

Infection or immunization can reprogram innate immune cells generating memory responses with broad protection against subsequent infection, a process referred to as "trained immunity." A new study by Stacy and colleagues demonstrates that, following acute infection, the commensal microbiota can also be "trained" to enhance colonization resistance against heterologous infection.


Subject(s)
Infections , Microbiota , Humans , Immunity, Innate , Immunization , Symbiosis
2.
Cell ; 172(1-2): 176-190.e19, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29328912

ABSTRACT

The dogma that adaptive immunity is the only arm of the immune response with memory capacity has been recently challenged by several studies demonstrating evidence for memory-like innate immune training. However, the underlying mechanisms and location for generating such innate memory responses in vivo remain unknown. Here, we show that access of Bacillus Calmette-Guérin (BCG) to the bone marrow (BM) changes the transcriptional landscape of hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs), leading to local cell expansion and enhanced myelopoiesis at the expense of lymphopoiesis. Importantly, BCG-educated HSCs generate epigenetically modified macrophages that provide significantly better protection against virulent M. tuberculosis infection than naïve macrophages. By using parabiotic and chimeric mice, as well as adoptive transfer approaches, we demonstrate that training of the monocyte/macrophage lineage via BCG-induced HSC reprogramming is sustainable in vivo. Our results indicate that targeting the HSC compartment provides a novel approach for vaccine development.


Subject(s)
Hematopoietic Stem Cells/immunology , Immunity, Innate , Immunologic Memory , Mycobacterium bovis/immunology , Transcriptome , Animals , Cell Line , Cells, Cultured , Epigenesis, Genetic , Hematopoiesis , Mice , Mice, Inbred C57BL , Tuberculosis/immunology
3.
Nat Immunol ; 21(12): 1528-1539, 2020 12.
Article in English | MEDLINE | ID: mdl-33020661

ABSTRACT

Mutations that impact immune cell migration and result in immune deficiency illustrate the importance of cell movement in host defense. In humans, loss-of-function mutations in DOCK8, a guanine exchange factor involved in hematopoietic cell migration, lead to immunodeficiency and, paradoxically, allergic disease. Here, we demonstrate that, like humans, Dock8-/- mice have a profound type 2 CD4+ helper T (TH2) cell bias upon pulmonary infection with Cryptococcus neoformans and other non-TH2 stimuli. We found that recruited Dock8-/-CX3CR1+ mononuclear phagocytes are exquisitely sensitive to migration-induced cell shattering, releasing interleukin (IL)-1ß that drives granulocyte-macrophage colony-stimulating factor (GM-CSF) production by CD4+ T cells. Blocking IL-1ß, GM-CSF or caspase activation eliminated the type-2 skew in mice lacking Dock8. Notably, treatment of infected wild-type mice with apoptotic cells significantly increased GM-CSF production and TH2 cell differentiation. This reveals an important role for cell death in driving type 2 signals during infection, which may have implications for understanding the etiology of type 2 CD4+ T cell responses in allergic disease.


Subject(s)
Guanine Nucleotide Exchange Factors/deficiency , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Th2 Cells/immunology , Th2 Cells/metabolism , Animals , Biomarkers , Caspases/metabolism , Cell Movement/genetics , Cell Movement/immunology , Cytokines/genetics , Cytokines/metabolism , Disease Susceptibility , Gene Expression , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Immunophenotyping , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Mice , Mice, Knockout , Myeloid Cells/immunology , Myeloid Cells/metabolism , Phagocytes/immunology , Phagocytes/metabolism , Signal Transduction
4.
Nat Immunol ; 17(1): 65-75, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26595887

ABSTRACT

Viral respiratory tract infections are the main causative agents of the onset of infection-induced asthma and asthma exacerbations that remain mechanistically unexplained. Here we found that deficiency in signaling via type I interferon receptor led to deregulated activation of group 2 innate lymphoid cells (ILC2 cells) and infection-associated type 2 immunopathology. Type I interferons directly and negatively regulated mouse and human ILC2 cells in a manner dependent on the transcriptional activator ISGF3 that led to altered cytokine production, cell proliferation and increased cell death. In addition, interferon-γ (IFN-γ) and interleukin 27 (IL-27) altered ILC2 function dependent on the transcription factor STAT1. These results demonstrate that type I and type II interferons, together with IL-27, regulate ILC2 cells to restrict type 2 immunopathology.


Subject(s)
Immunity, Innate/immunology , Interferon Type I/immunology , Lymphocytes/immunology , Respiratory Tract Infections/immunology , Animals , Cytokines/biosynthesis , Cytokines/immunology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Orthomyxoviridae Infections/immunology , Real-Time Polymerase Chain Reaction , Respiratory Tract Infections/pathology
5.
Proc Natl Acad Sci U S A ; 121(40): e2406294121, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39312670

ABSTRACT

In the lower respiratory tract, the alveolar spaces are divided from the bloodstream and the external environment by only a few microns of interstitial tissue. Alveolar macrophages (AMs) defend this delicate mucosal surface from invading infections by regularly patrolling the site. AMs have three behavior modalities to achieve this goal: extending cell protrusions to probe and sample surrounding areas, squeezing the whole cell body between alveoli, and patrolling by moving the cell body around each alveolus. In this study, we found Rho GTPase, cell division control protein 42 (CDC42) expression significantly decreased after berry-flavored e-cigarette (e-cig) exposure. This shifted AM behavior from squeezing to probing. Changes in AM behavior led to a reduction in the clearance of inhaled bacteria, Pseudomonas aeruginosa. These findings shed light on pathways involved in AM migration and highlight the harmful impact of e-cig vaping on AM function.

6.
Immunity ; 45(4): 831-846, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27760339

ABSTRACT

T follicular helper (Tfh) cells are a CD4+ T cell subset critical for long-lived humoral immunity. We hypothesized that integrins play a decisive role in Tfh cell biology. Here we show that Tfh cells expressed a highly active form of leukocyte function-associated antigen-1 (LFA-1) that was required for their survival within the germinal center niche. In addition, LFA-1 promoted expression of Bcl-6, a transcriptional repressor critical for Tfh cell differentiation, and inhibition of LFA-1 abolished Tfh cell generation and prevented protective humoral immunity to intestinal helminth infection. Furthermore, we demonstrated that expression of Talin-1, an adaptor protein that regulates LFA-1 affinity, dictated Tfh versus Th2 effector cell differentiation. Collectively, our results define unique functions for LFA-1 in the Tfh cell effector program and suggest that integrin activity is important in lineage decision-making events in the adaptive immune system.


Subject(s)
Cell Differentiation/immunology , Lymphocyte Activation/immunology , Lymphocyte Function-Associated Antigen-1/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Cells, Cultured , Germinal Center/immunology , Humans , Immunity, Humoral/immunology , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-bcl-6/immunology
7.
J Immunol ; 208(7): 1719-1728, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35346966

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne pathogen that recently caused a series of increasingly severe outbreaks. We previously demonstrated that, compared with a pre-epidemic isolate (ZIKVCDN), a Brazilian ZIKV isolate (ZIKVBR) possesses a novel capacity to suppress host immunity, resulting in delayed viral clearance. However, whether ZIKVBR modulates CD4 T cell responses remains unknown. In this study, we show that, in comparison with ZIKVCDN infection, CD4 T cells are less polarized to the Th1 subtype following ZIKVBR challenge in mice. In contrast, we observed an enhanced accumulation of T follicular helper cells 10, 14, and 21 d postinfection with ZIKVBR This response correlated with an enhanced germinal center B cell response and robust production of higher avidity-neutralizing Abs following ZIKVBR infection. Taken together, our data suggest that contemporary ZIKV strains have evolved to differentially induce CD4 T cell, B cell, and Ab responses and this could provide a model to further define the signals required for T follicular helper cell development.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , B-Lymphocytes , Immunity, Cellular , Mice , T Follicular Helper Cells
8.
Br J Anaesth ; 133(2): 360-370, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38862382

ABSTRACT

BACKGROUND: Chronic post-surgical pain (CPSP) significantly impacts patients' recovery and quality of life. Although environmental risk factors are well-established, genetic risk remains less understood. METHODS: A meta-analysis of genome-wide association studies followed by partitioned heritability was performed on 1350 individuals across five surgery types: hysterectomy, mastectomy, abdominal, hernia, and knee. In subsequent animal studies, withdrawal thresholds to evoked mechanical stimulation were measured in Rag1 null mutant and wild-type mice after plantar incision and laparotomy. Cell sorting by flow cytometry tracked recruitment of immune cell types. RESULTS: We discovered 77 genome-wide significant single-nucleotide polymorphism (SNP) hits, distributed among 24 loci and 244 genes. Meta-analysis of all cohorts estimated a SNP-based narrow-sense heritability for CPSP at ∼39%, indicating a substantial genetic contribution. Partitioned heritability analysis across a wide variety of tissues revealed enrichment of heritability in immune system-related genes, particularly those associated with B and T cells. Rag1 null mutant mice lacking both T and B cells exhibited exacerbated and prolonged allodynia up to 42 days after surgery, which was rescued by B-cell transfer. Recruitment patterns of B cells but not T cells differed significantly during the first 7 days after injury in the footpad, lymph nodes, and dorsal root ganglia. CONCLUSIONS: These findings suggest a key protective role for the adaptive immune system in the development of chronic post-surgical pain.


Subject(s)
B-Lymphocytes , Chronic Pain , Genome-Wide Association Study , Pain, Postoperative , Animals , Female , Humans , Male , Mice , B-Lymphocytes/immunology , Chronic Pain/genetics , Disease Models, Animal , Hyperalgesia/genetics , Mice, Knockout , Pain, Postoperative/genetics , Polymorphism, Single Nucleotide
9.
Nat Immunol ; 13(1): 44-50, 2011 Nov 27.
Article in English | MEDLINE | ID: mdl-22120118

ABSTRACT

Mouse invariant natural killer T cells (iNKT cells) provide cognate and noncognate help for lipid and protein-specific B cells, respectively. However, the long-term outcome for B cells after cognate help is provided by iNKT cells is unknown at present. Here we found that cognate iNKT cell help resulted in a B cell differentiation program characterized by extrafollicular plasmablasts, germinal-center formation, affinity maturation and a robust primary immunoglobulin G (IgG) antibody response that was uniquely dependent on iNKT cell-derived interleukin 21 (IL-21). However, cognate help from iNKT cells did not generate an enhanced humoral memory response. Thus, cognate iNKT cell help for lipid-specific B cells induces a unique signature that is a hybrid of classic T cell-dependent and T cell-independent type 2 B cell responses.


Subject(s)
Antigens/immunology , B-Lymphocytes/immunology , Interleukins/physiology , Lipids/immunology , Natural Killer T-Cells/immunology , Animals , Germinal Center/immunology , Immunity, Humoral , Immunologic Memory , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Antigen, B-Cell/immunology , Signal Transduction/immunology , Spleen/immunology
10.
PLoS Pathog ; 16(8): e1008741, 2020 08.
Article in English | MEDLINE | ID: mdl-32750085

ABSTRACT

Aspergillus fumigatus is an opportunistic mold that infects patients who are immunocompromised or have chronic lung disease, causing significant morbidity and mortality in these populations. While the factors governing the host response to A. fumigatus remain poorly defined, neutrophil recruitment to the site of infection is critical to clear the fungus. Galectin-3 is a mammalian ß-galactose-binding lectin with both antimicrobial and immunomodulatory activities, however the role of galectin-3 in the defense against molds has not been studied. Here we show that galectin-3 expression is markedly up-regulated in mice and humans with pulmonary aspergillosis. Galectin-3 deficient mice displayed increased fungal burden and higher mortality during pulmonary infection. In contrast to previous reports with pathogenic yeast, galectin-3 exhibited no antifungal activity against A. fumigatus in vitro. Galectin-3 deficient mice exhibited fewer neutrophils in their airways during infection, despite normal numbers of total lung neutrophils. Intravital imaging studies confirmed that galectin-3 was required for normal neutrophil migration to the airspaces during fungal infection. Adoptive transfer experiments demonstrated that stromal rather than neutrophil-intrinsic galectin-3 was necessary for normal neutrophil entry into the airspaces. Live cell imaging studies revealed that extracellular galectin-3 directly increases neutrophil motility. Taken together, these data demonstrate that extracellular galectin-3 facilitates recruitment of neutrophils to the site of A. fumigatus infection, and reveals a novel role for galectin-3 in host defense against fungal infections.


Subject(s)
Aspergillosis/immunology , Aspergillus fumigatus/physiology , Galectin 3/immunology , Lung/microbiology , Neutrophils/cytology , Animals , Aspergillosis/genetics , Aspergillosis/microbiology , Aspergillosis/physiopathology , Aspergillus fumigatus/genetics , Cell Movement , Female , Galectin 3/genetics , Humans , Lung/immunology , Male , Mice , Mice, Inbred C57BL , Neutrophils/immunology
11.
J Immunol ; 202(1): 69-78, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30478091

ABSTRACT

The protein kinase Mst1 is a key component of the evolutionarily conserved Hippo pathway that regulates cell survival, proliferation, differentiation, and migration. In humans, Mst1 deficiency causes primary immunodeficiency. Patients with MST1-null mutations show progressive loss of naive T cells but, paradoxically, mildly elevated serum Ab titers. Nonetheless, the role of Mst1 in humoral immunity remains poorly understood. In this study, we found that early T cell-dependent IgG1 responses in young adult Mst1-deficient mice were largely intact with signs of impaired affinity maturation. However, the established Ag-specific IgG1 titers in Mst1-deficient mice decayed more readily because of a loss of Ag-specific but not the overall bone marrow plasma cells. Despite the impaired affinity and longevity of Ag-specific Abs, Mst1-deficient mice produced plasma cells displaying apparently normal maturation markers with intact migratory and secretory capacities. Intriguingly, in immunized Mst1-deficient mice, T follicular helper cells were hyperactive, expressing higher levels of IL-21, IL-4, and surface CD40L. Accordingly, germinal center B cells progressed more rapidly into the plasma cell lineage, presumably forgoing rigorous affinity maturation processes. Importantly, Mst1-deficient mice had elevated levels of CD138+Blimp1+ splenic plasma cell populations, yet the size of the bone marrow plasma cell population remained normal. Thus, overproduced low-affinity plasma cells from dysregulated germinal centers seem to underlie humoral immune defects in Mst1-deficiency. Our findings imply that vaccination of Mst1-deficient human patients, even at the early stage of life, may fail to establish long-lived high-affinity humoral immunity and that prophylactic Ab replacement therapy can be beneficial to the patients.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Protein Serine-Threonine Kinases/metabolism , T-Lymphocytes/immunology , Animals , Antibody Affinity , Humans , Immunity, Humoral/genetics , Immunoglobulin G/metabolism , Immunologic Deficiency Syndromes/genetics , Immunologic Memory/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation/genetics , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Vaccination
12.
J Immunol ; 199(1): 244-252, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28533444

ABSTRACT

IgE production plays a crucial role in protective as well as pathogenic type 2 immune responses. Although the cytokine IL-4 is required for the development of IgE-producing plasma cells, the source of IL-4 and cellular requirements for optimal IgE responses remain unclear. Recent evidence suggests that T follicular helper (Tfh) cells are the primary producer of IL-4 in the reactive lymph node during type 2 immune responses. As Tfh cells are also required for the development of plasmablasts derived from germinal center and extrafollicular sources, we hypothesized that this cell subset is essential for the IgE plasmablast response. In this study, we show that during intestinal helminth infection, IL-4 derived from Tfh cells is required for IgE class switching and plasmablast formation. Notably, early IgE class switching did not require germinal center formation. Additionally, Tfh cell-derived IL-4 was required to maintain the Th2 response in the mesenteric lymph nodes of infected mice. Collectively, our results indicate that IL-4-producing Tfh cells are central orchestrators of the type 2 immune response in the reactive lymph nodes during parasitic helminth infection.


Subject(s)
Helminthiasis/immunology , Immunoglobulin E/biosynthesis , Interleukin-4/immunology , Intestinal Diseases, Parasitic/immunology , Nematospiroides dubius , Strongylida Infections/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , B-Lymphocytes/immunology , Cell Differentiation , Germinal Center/cytology , Germinal Center/immunology , Helminthiasis/parasitology , Immunoglobulin Class Switching , Immunoglobulin E/immunology , Immunoglobulin G/immunology , Intestinal Diseases, Parasitic/parasitology , Lymph Nodes/cytology , Lymph Nodes/immunology , Mice , Plasma Cells/immunology , T-Lymphocyte Subsets
13.
Nucleic Acids Res ; 45(W1): W180-W188, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28449106

ABSTRACT

The widespread application of next-generation sequencing technologies has revolutionized microbiome research by enabling high-throughput profiling of the genetic contents of microbial communities. How to analyze the resulting large complex datasets remains a key challenge in current microbiome studies. Over the past decade, powerful computational pipelines and robust protocols have been established to enable efficient raw data processing and annotation. The focus has shifted toward downstream statistical analysis and functional interpretation. Here, we introduce MicrobiomeAnalyst, a user-friendly tool that integrates recent progress in statistics and visualization techniques, coupled with novel knowledge bases, to enable comprehensive analysis of common data outputs produced from microbiome studies. MicrobiomeAnalyst contains four modules - the Marker Data Profiling module offers various options for community profiling, comparative analysis and functional prediction based on 16S rRNA marker gene data; the Shotgun Data Profiling module supports exploratory data analysis, functional profiling and metabolic network visualization of shotgun metagenomics or metatranscriptomics data; the Taxon Set Enrichment Analysis module helps interpret taxonomic signatures via enrichment analysis against >300 taxon sets manually curated from literature and public databases; finally, the Projection with Public Data module allows users to visually explore their data with a public reference data for pattern discovery and biological insights. MicrobiomeAnalyst is freely available at http://www.microbiomeanalyst.ca.


Subject(s)
Computational Biology/methods , Metabolic Networks and Pathways/genetics , Metagenomics/statistics & numerical data , Microbiota/genetics , Software , Computer Graphics , DNA Barcoding, Taxonomic/methods , Datasets as Topic , Female , Gastrointestinal Tract/microbiology , Humans , Internet , Male , Meta-Analysis as Topic , Metagenomics/methods , Mouth/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Skin/microbiology , Vagina/microbiology
15.
Trends Immunol ; 36(5): 307-14, 2015 May.
Article in English | MEDLINE | ID: mdl-25843635

ABSTRACT

Globally, respiratory infections cause more than 4 million deaths per year, with influenza and tuberculosis (TB) in particular being major causes of mortality and morbidity. Although immune cell activation is critical for killing respiratory pathogens, this response must be tightly regulated to effectively control and eliminate invading microorganisms while minimizing immunopathology and maintaining pulmonary function. The distinct microenvironment of the lung is constantly patrolled by alveolar macrophages (Mφ), which are essential for tissue homeostasis, early pathogen recognition, initiation of the local immune response, and resolution of inflammation. Here, we focus on recent advances that have provided insight into the relation between pulmonary Mφ, type I interferon (IFN) signaling, and the delicate balance between protective and pathological immune responses in the lung.


Subject(s)
Homeostasis , Interferon Type I/metabolism , Lung/immunology , Lung/metabolism , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Animals , Chemotaxis, Leukocyte , Humans , Immunomodulation , Lung/pathology , Pneumonia/immunology , Pneumonia/metabolism , Pneumonia/pathology , Respiratory System/immunology , Respiratory System/metabolism , Signal Transduction
16.
Mult Scler ; 24(1): 53-57, 2018 01.
Article in English | MEDLINE | ID: mdl-29307298

ABSTRACT

The human microbiota is composed of diverse forms of microorganisms that live on or in us and plays a crucial role in the health and development. Commensal species that reside in the intestine particularly influence host physiology at local and systemic levels. Multiple sclerosis (MS) is a debilitating autoimmune disorder of the central nervous system for which there is currently no cure. While the cause of MS is unknown, there is a growing body of evidence suggesting that the microbiota can play both pathogenic and protective roles in disease progression. In this review, we provide a brief overview, based on both animal and clinical studies, of the current understanding by which the microbiota may influence MS and discuss opportunities for therapeutic intervention that may alleviate the symptoms associated with this debilitating neuroimmunological disease.


Subject(s)
Gastrointestinal Microbiome/immunology , Multiple Sclerosis/microbiology , Animals , Humans
17.
J Allergy Clin Immunol ; 140(6): 1604-1615.e5, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28216433

ABSTRACT

BACKGROUND: A number of food allergies (eg, fish, shellfish, and nuts) are lifelong, without any disease-transforming therapies, and unclear in their underlying immunology. Clinical manifestations of food allergy are largely mediated by IgE. Although persistent IgE titers have been attributed conventionally to long-lived IgE+ plasma cells (PCs), this has not been directly and comprehensively tested. OBJECTIVE: We sought to evaluate mechanisms underlying persistent IgE and allergic responses to food allergens. METHODS: We used a model of peanut allergy and anaphylaxis, various knockout mice, adoptive transfer experiments, and in vitro assays to identify mechanisms underlying persistent IgE humoral immunity over almost the entire lifespan of the mouse (18-20 months). RESULTS: Contrary to conventional paradigms, our data show that clinically relevant lifelong IgE titers are not sustained by long-lived IgE+ PCs. Instead, lifelong reactivity is conferred by allergen-specific long-lived memory B cells that replenish the IgE+ PC compartment. B-cell reactivation requires allergen re-exposure and IL-4 production by CD4 T cells. We define the half-lives of antigen-specific germinal centers (23.3 days), IgE+ and IgG1+ PCs (60 and 234.4 days, respectively), and clinically relevant cell-bound IgE (67.3 days). CONCLUSIONS: These findings can explain lifelong food allergies observed in human subjects as the consequence of allergen exposures that recurrently activate memory B cells and identify these as a therapeutic target with disease-transforming potential.


Subject(s)
Anaphylaxis/immunology , B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , Food Hypersensitivity/immunology , Th2 Cells/immunology , Allergens/immunology , Animals , Arachis/immunology , Cells, Cultured , Humans , Immunity, Humoral , Immunoglobulin E/metabolism , Immunologic Memory , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout
18.
Infect Immun ; 83(9): 3590-600, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26123803

ABSTRACT

Airway colonization by the mold Aspergillus fumigatus is common in patients with underlying lung disease and is associated with chronic airway inflammation. Studies probing the inflammatory response to colonization with A. fumigatus hyphae have been hampered by the lack of a model of chronic colonization in immunocompetent mice. By infecting mice intratracheally with conidia embedded in agar beads (Af beads), we have established an in vivo model to study the natural history of airway colonization with live A. fumigatus hyphae. Histopathological examination and galactomannan assay of lung homogenates demonstrated that hyphae exited beads and persisted in the lungs of mice up to 28 days postinfection without invasive disease. Fungal lesions within the airways were surrounded by a robust neutrophilic inflammatory reaction and peribronchial infiltration of lymphocytes. Whole-lung cytokine analysis from Af bead-infected mice revealed an increase in proinflammatory cytokines and chemokines early in infection. Evidence of a Th2 type response was observed only early in the course of colonization, including increased levels of interleukin-4 (IL-4), elevated IgE levels in serum, and a mild increase in airway responsiveness. Pulmonary T cell subset analysis during infection mirrored these results with an initial transient increase in IL-4-producing CD4(+) T cells, followed by a rise in IL-17 and Foxp3(+) cells by day 14. These results provide the first report of the evolution of the immune response to A. fumigatus hyphal colonization.


Subject(s)
Hyphae/immunology , Pulmonary Aspergillosis/immunology , Pulmonary Aspergillosis/pathology , Animals , Aspergillus fumigatus/immunology , Disease Models, Animal , Female , Flow Cytometry , Immunophenotyping , Mice , Mice, Inbred C57BL , T-Lymphocyte Subsets/immunology
20.
J Immunol ; 191(2): 572-82, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23785119

ABSTRACT

Invariant NKT (iNKT) cells are glycolipid-specific innate lymphocytes emerging as critical players in the immune response to diverse infections and disease. iNKT cells are activated through cognate interactions with lipid-loaded APCs, by Ag-independent cytokine-mediated signaling pathways, or a combination of both. Although each of these modes of iNKT cell activation plays an important role in directing the humoral and cell-mediated immune response, the spatio-temporal nature of these interactions and the cellular requirements for activation are largely undefined. Combining novel in situ confocal imaging of αGalactosylceramide-loaded CD1d tetramer labeling to localize the endogenous iNKT cell population with cytokine reporter mice, we reveal the choreography of early murine splenic iNKT cell activation across diverse settings of glycolipid immunization and systemic infection with Streptococcus pneumoniae. We find that iNKT cells consolidate in the marginal zone and require dendritic cells lining the splenic marginal zone for activation following administration of cognate glycolipids and during systemic infection but not following exogenous cytokine administration. Although further establishing the importance of cognate iNKT cell interactions with APCs, we also show that noncognate iNKT-dependent mechanisms are sufficient to mediate effector outcomes, such as STAT signaling and dendritic cell licensing throughout the splenic parenchyma. Collectively, these data provide new insight into how iNKT cells may serve as a natural adjuvant in facilitating adaptive immune responses, irrespective of their tissue localization.


Subject(s)
Lymphocyte Activation , Natural Killer T-Cells/immunology , Spleen/immunology , Streptococcus pneumoniae/immunology , Adaptive Immunity , Animals , Antigen-Presenting Cells/immunology , Antigens, CD1d/immunology , Cell Communication , Cytokines/biosynthesis , Cytokines/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Galactosylceramides , Mice , Mice, Inbred BALB C , Mice, Knockout , Pneumococcal Infections/immunology , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL