Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cell ; 186(9): 1895-1911.e21, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37028429

ABSTRACT

Cells respond to environmental cues by remodeling their inventories of multiprotein complexes. Cellular repertoires of SCF (SKP1-CUL1-F box protein) ubiquitin ligase complexes, which mediate much protein degradation, require CAND1 to distribute the limiting CUL1 subunit across the family of ∼70 different F box proteins. Yet, how a single factor coordinately assembles numerous distinct multiprotein complexes remains unknown. We obtained cryo-EM structures of CAND1-bound SCF complexes in multiple states and correlated mutational effects on structures, biochemistry, and cellular assays. The data suggest that CAND1 clasps idling catalytic domains of an inactive SCF, rolls around, and allosterically rocks and destabilizes the SCF. New SCF production proceeds in reverse, through SKP1-F box allosterically destabilizing CAND1. The CAND1-SCF conformational ensemble recycles CUL1 from inactive complexes, fueling mixing and matching of SCF parts for E3 activation in response to substrate availability. Our data reveal biogenesis of a predominant family of E3 ligases, and the molecular basis for systemwide multiprotein complex assembly.


Subject(s)
Cullin Proteins , F-Box Proteins , SKP Cullin F-Box Protein Ligases , Transcription Factors , Humans , Cullin Proteins/chemistry , Cullin Proteins/metabolism , F-Box Proteins/metabolism , Molecular Conformation , SKP Cullin F-Box Protein Ligases/chemistry , SKP Cullin F-Box Protein Ligases/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism
3.
Mol Cell ; 83(5): 770-786.e9, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36805027

ABSTRACT

E3 ligase recruitment of proteins containing terminal destabilizing motifs (degrons) is emerging as a major form of regulation. How those E3s discriminate bona fide substrates from other proteins with terminal degron-like sequences remains unclear. Here, we report that human KLHDC2, a CRL2 substrate receptor targeting C-terminal Gly-Gly degrons, is regulated through interconversion between two assemblies. In the self-inactivated homotetramer, KLHDC2's C-terminal Gly-Ser motif mimics a degron and engages the substrate-binding domain of another protomer. True substrates capture the monomeric CRL2KLHDC2, driving E3 activation by neddylation and subsequent substrate ubiquitylation. Non-substrates such as NEDD8 bind KLHDC2 with high affinity, but its slow on rate prevents productive association with CRL2KLHDC2. Without substrate, neddylated CRL2KLHDC2 assemblies are deactivated via distinct mechanisms: the monomer by deneddylation and the tetramer by auto-ubiquitylation. Thus, substrate specificity is amplified by KLHDC2 self-assembly acting like a molecular timer, where only bona fide substrates may bind before E3 ligase inactivation.


Subject(s)
Proteins , Ubiquitin-Protein Ligases , Humans , Carrier Proteins , Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
4.
Blood ; 137(2): 155-167, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33156908

ABSTRACT

The histone mark H3K27me3 and its reader/writer polycomb repressive complex 2 (PRC2) mediate widespread transcriptional repression in stem and progenitor cells. Mechanisms that regulate this activity are critical for hematopoietic development but are poorly understood. Here we show that the E3 ubiquitin ligase F-box only protein 11 (FBXO11) relieves PRC2-mediated repression during erythroid maturation by targeting its newly identified substrate bromo adjacent homology domain-containing 1 (BAHD1), an H3K27me3 reader that recruits transcriptional corepressors. Erythroblasts lacking FBXO11 are developmentally delayed, with reduced expression of maturation-associated genes, most of which harbor bivalent histone marks at their promoters. In FBXO11-/- erythroblasts, these gene promoters bind BAHD1 and fail to recruit the erythroid transcription factor GATA1. The BAHD1 complex interacts physically with PRC2, and depletion of either component restores FBXO11-deficient erythroid gene expression. Our studies identify BAHD1 as a novel effector of PRC2-mediated repression and reveal how a single E3 ubiquitin ligase eliminates PRC2 repression at many developmentally poised bivalent genes during erythropoiesis.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Erythropoiesis/physiology , F-Box Proteins/metabolism , Gene Expression Regulation/physiology , Polycomb Repressive Complex 2/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Cell Line , Erythroblasts/metabolism , Humans , Proteolysis
5.
Blood Adv ; 7(18): 5608-5623, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37522715

ABSTRACT

ETS variant 6 (ETV6) encodes a transcriptional repressor expressed in hematopoietic stem and progenitor cells (HSPCs), where it is required for adult hematopoiesis. Heterozygous pathogenic germline ETV6 variants are associated with thrombocytopenia 5 (T5), a poorly understood genetic condition resulting in thrombocytopenia and predisposition to hematologic malignancies. To elucidate how germline ETV6 variants affect HSPCs and contribute to disease, we generated a mouse model harboring an Etv6R355X loss-of-function variant, equivalent to the T5-associated variant ETV6R359X. Under homeostatic conditions, all HSPC subpopulations are present in the bone marrow (BM) of Etv6R355X/+ mice; however, these animals display shifts in the proportions and/or numbers of progenitor subtypes. To examine whether the Etv6R355X/+ mutation affects HSPC function, we performed serial competitive transplantation and observed that Etv6R355X/+ lineage-sca1+cKit+ (LSK) cells exhibit impaired reconstitution, with near complete failure to repopulate irradiated recipients by the tertiary transplant. Mechanistic studies incorporating cleavage under target and release under nuclease assay, assay for transposase accessible chromatin sequencing, and high-throughput chromosome conformation capture identify ETV6 binding at inflammatory gene loci, including multiple genes within the tumor necrosis factor (TNF) signaling pathway in ETV6-sufficient mouse and human HSPCs. Furthermore, single-cell RNA sequencing of BM cells isolated after transplantation reveals upregulation of inflammatory genes in Etv6R355X/+ progenitors when compared to Etv6+/+ counterparts. Corroborating these findings, Etv6R355X/+ HSPCs produce significantly more TNF than Etv6+/+ cells post-transplantation. We conclude that ETV6 is required to repress inflammatory gene expression in HSPCs under conditions of hematopoietic stress, and this mechanism may be critical to sustain HSPC function.


Subject(s)
Hematopoietic Stem Cells , Thrombocytopenia , Animals , Humans , Mice , Bone Marrow , Bone Marrow Cells/metabolism , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Thrombocytopenia/metabolism , ETS Translocation Variant 6 Protein
6.
Protein Sci ; 29(4): 1004-1017, 2020 04.
Article in English | MEDLINE | ID: mdl-31981247

ABSTRACT

A distinguishing feature of camel (Camelus dromedarius) VHH domains are noncanonical disulfide bonds between CDR1 and CDR3. The disulfide bond may provide an evolutionary advantage, as one of the cysteines in the bond is germline encoded. It has been hypothesized that this additional disulfide bond may play a role in binding affinity by reducing the entropic penalty associated with immobilization of a long CDR3 loop upon antigen binding. To examine the role of a noncanonical disulfide bond on antigen binding and the biophysical properties of a VHH domain, we have used the VHH R303, which binds the Listeria virulence factor InlB as a model. Using site directed mutagenesis, we produced a double mutant of R303 (C33A/C102A) to remove the extra disulfide bond of the VHH R303. Antigen binding was not affected by loss of the disulfide bond, however the mutant VHH displayed reduced thermal stability (Tm = 12°C lower than wild-type), and a loss of the ability to fold reversibly due to heat induced aggregation. X-ray structures of the mutant alone and in complex with InlB showed no major changes in the structure. B-factor analysis of the structures suggested that the loss of the disulfide bond elicited no major change on the flexibility of the CDR loops, and revealed no evidence of loop immobilization upon antigen binding. These results suggest that the noncanonical disulfide bond found in camel VHH may have evolved to stabilize the biophysical properties of the domain, rather than playing a significant role in antigen binding.


Subject(s)
Disulfides/chemistry , Listeria/chemistry , Single-Domain Antibodies/chemistry , Virulence Factors/chemistry , Animals , Antigen-Antibody Reactions , Binding Sites , Camelus , Disulfides/immunology , Listeria/immunology , Models, Molecular , Single-Domain Antibodies/immunology , Virulence Factors/immunology
SELECTION OF CITATIONS
SEARCH DETAIL