Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Stat Sci ; 37(2): 183-206, 2022 May.
Article in English | MEDLINE | ID: mdl-35664221

ABSTRACT

We present interoperability as a guiding framework for statistical modelling to assist policy makers asking multiple questions using diverse datasets in the face of an evolving pandemic response. Interoperability provides an important set of principles for future pandemic preparedness, through the joint design and deployment of adaptable systems of statistical models for disease surveillance using probabilistic reasoning. We illustrate this through case studies for inferring and characterising spatial-temporal prevalence and reproduction numbers of SARS-CoV-2 infections in England.

2.
Bioinformatics ; 36(5): 1492-1500, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31591642

ABSTRACT

MOTIVATION: High-throughput phenomic projects generate complex data from small treatment and large control groups that increase the power of the analyses but introduce variation over time. A method is needed to utlize a set of temporally local controls that maximizes analytic power while minimizing noise from unspecified environmental factors. RESULTS: Here we introduce 'soft windowing', a methodological approach that selects a window of time that includes the most appropriate controls for analysis. Using phenotype data from the International Mouse Phenotyping Consortium (IMPC), adaptive windows were applied such that control data collected proximally to mutants were assigned the maximal weight, while data collected earlier or later had less weight. We applied this method to IMPC data and compared the results with those obtained from a standard non-windowed approach. Validation was performed using a resampling approach in which we demonstrate a 10% reduction of false positives from 2.5 million analyses. We applied the method to our production analysis pipeline that establishes genotype-phenotype associations by comparing mutant versus control data. We report an increase of 30% in significant P-values, as well as linkage to 106 versus 99 disease models via phenotype overlap with the soft-windowed and non-windowed approaches, respectively, from a set of 2082 mutant mouse lines. Our method is generalizable and can benefit large-scale human phenomic projects such as the UK Biobank and the All of Us resources. AVAILABILITY AND IMPLEMENTATION: The method is freely available in the R package SmoothWin, available on CRAN http://CRAN.R-project.org/package=SmoothWin. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Population Health , Software , Animals , Genetic Association Studies , Humans , Mice , Phenotype
3.
BMC Biol ; 16(1): 70, 2018 06 21.
Article in English | MEDLINE | ID: mdl-29925374

ABSTRACT

BACKGROUND: Recent advances in clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing have led to the use of long single-stranded DNA (lssDNA) molecules for generating conditional mutations. However, there is still limited available data on the efficiency and reliability of this method. RESULTS: We generated conditional mouse alleles using lssDNA donor templates and performed extensive characterization of the resulting mutations. We observed that the use of lssDNA molecules as donors efficiently yielded founders bearing the conditional allele, with seven out of nine projects giving rise to modified alleles. However, rearranged alleles including nucleotide changes, indels, local rearrangements and additional integrations were also frequently generated by this method. Specifically, we found that alleles containing unexpected point mutations were found in three of the nine projects analyzed. Alleles originating from illegitimate repairs or partial integration of the donor were detected in eight projects. Furthermore, additional integrations of donor molecules were identified in four out of the seven projects analyzed by copy counting. This highlighted the requirement for a thorough allele validation by polymerase chain reaction, sequencing and copy counting of the mice generated through this method. We also demonstrated the feasibility of using lssDNA donors to generate thus far problematic point mutations distant from active CRISPR cutting sites by targeting two distinct genes (Gckr and Rims1). We propose a strategy to perform extensive quality control and validation of both types of mouse models generated using lssDNA donors. CONCLUSION: lssDNA donors reproducibly generate conditional alleles and can be used to introduce point mutations away from CRISPR/Cas9 cutting sites in mice. However, our work demonstrates that thorough quality control of new models is essential prior to reliably experimenting with mice generated by this method. These advances in genome editing techniques shift the challenge of mutagenesis from generation to the validation of new mutant models.


Subject(s)
DNA, Single-Stranded , Gene Editing/methods , Gene Targeting , Mice/genetics , Alleles , Animals , CRISPR-Cas Systems , Mutation , Reproducibility of Results
4.
Methods ; 121-122: 68-76, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28363792

ABSTRACT

The application of CRISPR/Cas9 technology has revolutionised genetics by greatly enhancing the efficacy of genome editing in the early embryo. Furthermore, the system has enabled the generation of allele types previously incompatible with in vivo mutagenesis. Despite its versatility and ease of implementation, CRISPR/Cas9 editing outcome is unpredictable and can generate mosaic founders. Therefore, careful genotyping and characterisation of new mutants is proving essential. The literature presents a wide range of protocols for molecular characterisation, each representing different levels of investment. We present strategies and protocols for designing, producing and screening CRISPR/Cas9 edited founders and genotyping their offspring according to desired allele type (indel, point mutation and deletion).


Subject(s)
Bacterial Proteins/genetics , CRISPR-Cas Systems , Endonucleases/genetics , Gene Editing/methods , Gene Knockout Techniques , Gene Transfer Techniques , RNA, Guide, Kinetoplastida/genetics , Alleles , Animals , Animals, Newborn , Bacterial Proteins/metabolism , CRISPR-Associated Protein 9 , Clustered Regularly Interspaced Short Palindromic Repeats , DNA Breaks, Double-Stranded , DNA End-Joining Repair , Embryo, Mammalian , Endonucleases/metabolism , Gene Targeting/methods , Genome , Genotyping Techniques , INDEL Mutation , Mice , Mice, Transgenic , Microinjections , Point Mutation , Quality Control , RNA, Guide, Kinetoplastida/metabolism , Recombinational DNA Repair , Zygote/cytology , Zygote/metabolism
5.
Nat Microbiol ; 7(1): 97-107, 2022 01.
Article in English | MEDLINE | ID: mdl-34972825

ABSTRACT

Global and national surveillance of SARS-CoV-2 epidemiology is mostly based on targeted schemes focused on testing individuals with symptoms. These tested groups are often unrepresentative of the wider population and exhibit test positivity rates that are biased upwards compared with the true population prevalence. Such data are routinely used to infer infection prevalence and the effective reproduction number, Rt, which affects public health policy. Here, we describe a causal framework that provides debiased fine-scale spatiotemporal estimates by combining targeted test counts with data from a randomized surveillance study in the United Kingdom called REACT. Our probabilistic model includes a bias parameter that captures the increased probability of an infected individual being tested, relative to a non-infected individual, and transforms observed test counts to debiased estimates of the true underlying local prevalence and Rt. We validated our approach on held-out REACT data over a 7-month period. Furthermore, our local estimates of Rt are indicative of 1-week- and 2-week-ahead changes in SARS-CoV-2-positive case numbers. We also observed increases in estimated local prevalence and Rt that reflect the spread of the Alpha and Delta variants. Our results illustrate how randomized surveys can augment targeted testing to improve statistical accuracy in monitoring the spread of emerging and ongoing infectious disease.


Subject(s)
COVID-19/epidemiology , Models, Statistical , SARS-CoV-2/isolation & purification , Basic Reproduction Number , Bias , COVID-19/diagnosis , COVID-19/transmission , COVID-19 Testing/statistics & numerical data , Forecasting , Humans , Prevalence , Reproducibility of Results , SARS-CoV-2/genetics , Spatio-Temporal Analysis , United Kingdom/epidemiology
6.
Lancet Reg Health Eur ; 15: 100322, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35187517

ABSTRACT

BACKGROUND: Ethnically diverse and socio-economically deprived communities have been differentially affected by the COVID-19 pandemic in the UK. METHOD: Using a multilevel regression model we assessed the time-varying association between SARS-CoV-2 infections and areal level deprivation and ethnicity from 1st of June 2020 to the 19th of September 2021. We separately considered weekly test positivity rate and estimated debiased prevalence at the Lower Tier Local Authority (LTLA) level, adjusting for confounders and spatio-temporal correlation structure. FINDINGS: Comparing the least deprived and predominantly White areas with most deprived and predominantly non-White areas over the whole study period, the weekly positivity rate increases from 2·977% (95% CrI 2.913%-3.029%) to 3·347% (95% CrI 3.300%-3.402%). Similarly, prevalence increases from 0·369% (95% CrI 0.361%-0.375%) to 0·405% (95% CrI 0.399%-0.412%). Deprivation has a stronger effect until October 2020, while the effect of ethnicity becomes more pronounced at the peak of the second wave and then again in May-June 2021. In the second wave of the pandemic, LTLAs with large South Asian populations were the most affected, whereas areas with large Black populations did not show increased values for either outcome during the entire period under analysis. INTERPRETATION: Deprivation and proportion of non-White populations are both associated with an increased COVID-19 burden in terms of disease spread and monitoring, but the strength of association varies over the course of the pandemic and for different ethnic subgroups. The consistency of results across the two outcomes suggests that deprivation and ethnicity have a differential impact on disease exposure or susceptibility rather than testing access and habits. FUNDINGS: EPSRC, MRC, The Alan Turing Institute, NIH, UKHSA, DHSC.

7.
medRxiv ; 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34790983

ABSTRACT

BACKGROUND: Ethnically diverse and socio-economically deprived communities have been differentially affected by the COVID-19 pandemic in the UK. METHOD: Using a multilevel regression model we assess the time-varying association between SARS-CoV-2 infections and areal level deprivation and ethnicity. We separately consider weekly test positivity rate (number of positive tests over the total number of tests) and estimated unbiased prevalence (proportion of individuals in the population who would test positive) at the Lower Tier Local Authority (LTLA) level. The model also adjusts for age, urbanicity, vaccine uptake and spatio-temporal correlation structure. FINDINGS: Comparing the least deprived and predominantly White areas with most deprived and predominantly non-White areas over the whole study period, the weekly positivity rate increases by 13% from 297% to 335%. Similarly, prevalence increases by 10% from 037% to 041%. Deprivation has a stronger effect until October 2020, while the effect of ethnicity becomes slightly more pronounced at the peak of the second wave and then again in May-June 2021. Not all BAME groups were equally affected: in the second wave of the pandemic, LTLAs with large South Asian populations were the most affected, whereas areas with large Black populations did not show increased values for either outcome during the entire period under analysis. INTERPRETATION: At the area level, IMD and BAME% are both associated with an increased COVID-19 burden in terms of prevalence (disease spread) and test positivity (disease monitoring), and the strength of association varies over the course of the pandemic. The consistency of results across the two outcome measures suggests that community level characteristics such as deprivation and ethnicity have a differential impact on disease exposure or susceptibility rather than testing access and habits. FUNDINGS: EPSRC, MRC, The Alan Turing Institute, NIH, UKHSA, DHSC, NIHR.

9.
Nat Commun ; 7: 12444, 2016 08 18.
Article in English | MEDLINE | ID: mdl-27534441

ABSTRACT

Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss.


Subject(s)
Aging/genetics , Genetic Testing , Mutagenesis/genetics , Animals , Cochlea/metabolism , Disease Models, Animal , Epithelium/ultrastructure , Evoked Potentials, Auditory, Brain Stem/physiology , Female , Hearing/genetics , Male , Mice, Inbred C57BL , Mutation/genetics , Pedigree , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL