Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Virol ; 98(3): e0147623, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38376991

ABSTRACT

The ability of virulent bacteriophages to lyse bacteria influences bacterial evolution, fitness, and population structure. Knowledge of both host susceptibility and resistance factors is crucial for the successful application of bacteriophages as biological control agents in clinical therapy, food processing, and agriculture. In this study, we isolated 12 bacteriophages termed SPLA phage which infect the foodborne pathogen Salmonella enterica. To determine phage host range, a diverse collection of Enterobacteriaceae and Salmonella enterica was used and genes involved in infection by six SPLA phages were identified using Salmonella Typhimurium strain ST4/74. Candidate host receptors included lipopolysaccharide (LPS), cellulose, and BtuB. Lipopolysaccharide was identified as a susceptibility factor for phage SPLA1a and mutations in LPS biosynthesis genes spontaneously emerged during culture with S. Typhimurium. Conversely, LPS was a resistance factor for phage SPLA5b which suggested that emergence of LPS mutations in culture with SPLA1a represented collateral sensitivity to SPLA5b. We show that bacteria-phage co-culture with SPLA1a and SPLA5b was more successful in limiting the emergence of phage resistance compared to single phage co-culture. Identification of host susceptibility and resistance genes and understanding infection dynamics are critical steps in the rationale design of phage cocktails against specific bacterial pathogens.IMPORTANCEAs antibiotic resistance continues to emerge in bacterial pathogens, bacterial viruses (phage) represent a potential alternative or adjunct to antibiotics. One challenge for their implementation is the predisposition of bacteria to rapidly acquire resistance to phages. We describe a functional genomics approach to identify mechanisms of susceptibility and resistance for newly isolated phages that infect and lyse Salmonella enterica and use this information to identify phage combinations that exploit collateral sensitivity, thus increasing efficacy. Collateral sensitivity is a phenomenon where resistance to one class of antibiotics increases sensitivity to a second class of antibiotics. We report a functional genomics approach to rationally design a phage combination with a collateral sensitivity dynamic which resulted in increased efficacy. Considering such evolutionary trade-offs has the potential to manipulate the outcome of phage therapy in favor of resolving infection without selecting for escape mutants and is applicable to other virus-host interactions.


Subject(s)
Bacteriophages , Environmental Microbiology , Salmonella enterica , Anti-Bacterial Agents/therapeutic use , Bacteriophages/isolation & purification , Drug Collateral Sensitivity , Lipopolysaccharides , Salmonella enterica/virology , Phage Therapy , Salmonella Infections/therapy , Humans
2.
BMC Genomics ; 25(1): 609, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886681

ABSTRACT

Adhesins are crucial factors in the virulence of bacterial pathogens such as Escherichia coli. However, to date no resources have been dedicated to the detailed analysis of E. coli adhesins. Here, we provide adhesiomeR software that enables characterization of the complete adhesin repertoire, termed the adhesiome. AdhesiomeR incorporates the most comprehensive database of E. coli adhesins and facilitates an extensive analysis of adhesiome. We demonstrate that adhesiomeR achieves 98% accuracy when compared with experimental analyses. Based on analysis of 15,000 E. coli genomes, we define novel adhesiome profiles and clusters, providing a nomenclature for a unified comparison of E. coli adhesiomes.


Subject(s)
Adhesins, Escherichia coli , Escherichia coli , Software , Adhesins, Escherichia coli/genetics , Adhesins, Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli/classification , Genome, Bacterial , Computational Biology/methods
3.
Vet Res ; 55(1): 70, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822378

ABSTRACT

Adaptation of avian pathogenic E. coli (APEC) to changing host environments including virulence factors expression is vital for disease progression. FdeC is an autotransporter adhesin that plays a role in uropathogenic Escherichia coli (UPEC) adhesion to epithelial cells. Expression of fdeC is known to be regulated by environmental conditions in UPEC and Shiga toxin-producing E. coli (STEC). The observation in a previous study that an APEC strain IMT5155 in which the fdeC gene was disrupted by a transposon insertion resulted in elevated adhesion to chicken intestinal cells prompted us to further explore the role of fdeC in infection. We found that the fdeC gene prevalence and FdeC variant prevalence differed between APEC and nonpathogenic E. coli genomes. Expression of the fdeC gene was induced at host body temperature, an infection relevant condition. Disruption of fdeC resulted in greater adhesion to CHIC-8E11 cells and increased motility at 42 °C compared to wild type (WT) and higher expression of multiple transporter proteins that increased inorganic ion export. Increased motility may be related to increased inorganic ion export since this resulted in downregulation of YbjN, a protein known to supress motility. Inactivation of fdeC in APEC strain IMT5155 resulted in a weaker immune response in chickens compared to WT in experimental infections. Our findings suggest that FdeC is upregulated in the host and contributes to interactions with the host by down-modulating motility during colonization. A thorough understanding of the regulation and function of FdeC could provide novel insights into E. coli pathogenesis.


Subject(s)
Adhesins, Escherichia coli , Bacterial Adhesion , Chickens , Escherichia coli Infections , Poultry Diseases , Poultry Diseases/microbiology , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Animals , Adhesins, Escherichia coli/genetics , Adhesins, Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Escherichia coli/physiology , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
4.
PLoS Pathog ; 17(1): e1009209, 2021 01.
Article in English | MEDLINE | ID: mdl-33465146

ABSTRACT

Salmonella Typhi is the primary causative agent of typhoid fever; an acute systemic infection that leads to chronic carriage in 3-5% of individuals. Chronic carriers are asymptomatic, difficult to treat and serve as reservoirs for typhoid outbreaks. Understanding the factors that contribute to chronic carriage is key to development of novel therapies to effectively resolve typhoid fever. Herein, although we observed no distinct clustering of chronic carriage isolates via phylogenetic analysis, we demonstrated that chronic isolates were phenotypically distinct from acute infection isolates. Chronic carriage isolates formed significantly thicker biofilms with greater biomass that correlated with significantly higher relative levels of extracellular DNA (eDNA) and DNABII proteins than biofilms formed by acute infection isolates. Importantly, extracellular DNABII proteins include integration host factor (IHF) and histone-like protein (HU) that are critical to the structural integrity of bacterial biofilms. In this study, we demonstrated that the biofilm formed by a chronic carriage isolate in vitro, was susceptible to disruption by a specific antibody against DNABII proteins, a successful first step in the development of a therapeutic to resolve chronic carriage.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , DnaB Helicases/metabolism , Extracellular Matrix/metabolism , Integration Host Factors/metabolism , Salmonella typhi/pathogenicity , Typhoid Fever/microbiology , Antibodies, Monoclonal/pharmacology , Bacterial Proteins/genetics , Biofilms/drug effects , DnaB Helicases/antagonists & inhibitors , DnaB Helicases/genetics , Humans , Integration Host Factors/genetics , Salmonella typhi/classification , Salmonella typhi/genetics , Typhoid Fever/drug therapy , Typhoid Fever/immunology
5.
Food Microbiol ; 112: 104237, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36906307

ABSTRACT

Non-Typhoidal Salmonella (NTS) continues to be a leading cause of foodborne illness worldwide. Food manufacturers implement hurdle technology by combining more than one approach to control food safety and quality, including preservatives such as organic acids, refrigeration, and heating. We assessed the variation in survival in stresses of genotypically diverse isolates of Salmonella enterica to identify genotypes with potential elevated risk to sub-optimal processing or cooking. Sub-lethal heat treatment, survival in desiccated conditions and growth in the presence of NaCl or organic acids were investigated. S. Gallinarum strain 287/91 was most sensitive to all stress conditions. While none of the strains replicated in a food matrix at 4 °C, S. Infantis strain S1326/28 retained the greatest viability, and six strains exhibited a significantly reduced viability. A S. Kedougou strain exhibited the greatest resistance to incubation at 60 °C in a food matrix that was significantly greater than S. Typhimurium U288, S Heidelberg, S. Kentucky, S. Schwarzengrund and S. Gallinarum strains. Two isolates of monophasic S. Typhimurium, S04698-09 and B54Col9 exhibited the greatest tolerance to desiccation that was significantly more than for the S. Kentucky and S. Typhimurium U288 strains. In general, the presence of 12 mM acetic acid or 14 mM citric acid resulted in a similar pattern of decreased growth in broth, but this was not observed for S. Enteritidis, and S. Typhimurium strains ST4/74 and U288 S01960-05. Acetic acid had a moderately greater effect on growth despite the lower concentration tested. A similar pattern of decreased growth was observed in the presence of 6% NaCl, with the notable exception that S. Typhimurium strain U288 S01960-05 exhibited enhanced growth in elevated NaCl concentrations.


Subject(s)
Salmonella enterica , Salmonella enterica/genetics , Sodium Chloride , Food Chain , Serogroup , Salmonella , Acetic Acid , Acids
6.
PLoS Genet ; 16(6): e1008850, 2020 06.
Article in English | MEDLINE | ID: mdl-32511244

ABSTRACT

Salmonella enterica serotype Typhimurium (S. Typhimurium) is a leading cause of gastroenteritis and bacteraemia worldwide, and a model organism for the study of host-pathogen interactions. Two S. Typhimurium strains (SL1344 and ATCC14028) are widely used to study host-pathogen interactions, yet genotypic variation results in strains with diverse host range, pathogenicity and risk to food safety. The population structure of diverse strains of S. Typhimurium revealed a major phylogroup of predominantly sequence type 19 (ST19) and a minor phylogroup of ST36. The major phylogroup had a population structure with two high order clades (α and ß) and multiple subclades on extended internal branches, that exhibited distinct signatures of host adaptation and anthropogenic selection. Clade α contained a number of subclades composed of strains from well characterized epidemics in domesticated animals, while clade ß contained multiple subclades associated with wild avian species. The contrasting epidemiology of strains in clade α and ß was reflected by the distinct distribution of antimicrobial resistance (AMR) genes, accumulation of hypothetically disrupted coding sequences (HDCS), and signatures of functional diversification. These observations were consistent with elevated anthropogenic selection of clade α lineages from adaptation to circulation in populations of domesticated livestock, and the predisposition of clade ß lineages to undergo adaptation to an invasive lifestyle by a process of convergent evolution with of host adapted Salmonella serotypes. Gene flux was predominantly driven by acquisition and recombination of prophage and associated cargo genes, with only occasional loss of these elements. The acquisition of large chromosomally-encoded genetic islands was limited, but notably, a feature of two recent pandemic clones (DT104 and monophasic S. Typhimurium ST34) of clade α (SGI-1 and SGI-4).


Subject(s)
Evolution, Molecular , Gastroenteritis/microbiology , Salmonella Food Poisoning/microbiology , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/genetics , Animals , Birds/microbiology , Genome, Bacterial/genetics , Host-Pathogen Interactions/genetics , Humans , Livestock/microbiology , Phylogeny , Salmonella Infections, Animal/transmission , Salmonella typhimurium/isolation & purification , Salmonella typhimurium/pathogenicity , Selection, Genetic , Serogroup , Whole Genome Sequencing
7.
PLoS Biol ; 17(1): e3000059, 2019 01.
Article in English | MEDLINE | ID: mdl-30645593

ABSTRACT

Salmonella Typhimurium sequence type (ST) 313 causes invasive nontyphoidal Salmonella (iNTS) disease in sub-Saharan Africa, targeting susceptible HIV+, malarial, or malnourished individuals. An in-depth genomic comparison between the ST313 isolate D23580 and the well-characterized ST19 isolate 4/74 that causes gastroenteritis across the globe revealed extensive synteny. To understand how the 856 nucleotide variations generated phenotypic differences, we devised a large-scale experimental approach that involved the global gene expression analysis of strains D23580 and 4/74 grown in 16 infection-relevant growth conditions. Comparison of transcriptional patterns identified virulence and metabolic genes that were differentially expressed between D23580 versus 4/74, many of which were validated by proteomics. We also uncovered the S. Typhimurium D23580 and 4/74 genes that showed expression differences during infection of murine macrophages. Our comparative transcriptomic data are presented in a new enhanced version of the Salmonella expression compendium, SalComD23580: http://bioinf.gen.tcd.ie/cgi-bin/salcom_v2.pl. We discovered that the ablation of melibiose utilization was caused by three independent SNP mutations in D23580 that are shared across ST313 lineage 2, suggesting that the ability to catabolize this carbon source has been negatively selected during ST313 evolution. The data revealed a novel, to our knowledge, plasmid maintenance system involving a plasmid-encoded CysS cysteinyl-tRNA synthetase, highlighting the power of large-scale comparative multicondition analyses to pinpoint key phenotypic differences between bacterial pathovariants.


Subject(s)
Salmonella Infections/genetics , Salmonella typhimurium/genetics , Animals , Gastroenteritis/microbiology , Gene Expression Profiling/methods , Genetic Variation/genetics , Humans , Macrophages , Mice , Salmonella Infections/microbiology , Virulence
8.
J Antimicrob Chemother ; 76(5): 1160-1167, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33347558

ABSTRACT

BACKGROUND: Typhoid fever, caused by S. enterica ser. Typhi, continues to be a substantial health burden in developing countries. Little is known of the genotypic diversity of S. enterica ser. Typhi in Zimbabwe, but this is key for understanding the emergence and spread of this pathogen and devising interventions for its control. OBJECTIVES: To report the molecular epidemiology of S. enterica ser. Typhi outbreak strains circulating from 2012 to 2019 in Zimbabwe, using comparative genomics. METHODS: A review of typhoid cases records from 2012 to 2019 in Zimbabwe was performed. The phylogenetic relationship of outbreak isolates from 2012 to 2019 and emergence of antibiotic resistance was investigated by whole-genome sequence analysis. RESULTS: A total 22 479 suspected typhoid cases, 760 confirmed cases were reported from 2012 to 2019 and 29 isolates were sequenced. The majority of the sequenced isolates were predicted to confer resistance to aminoglycosides, ß-lactams, phenicols, sulphonamides, tetracycline and fluoroquinolones (including qnrS detection). The qnrS1 gene was associated with an IncN (subtype PST3) plasmid in 79% of the isolates. Whole-genome SNP analysis, SNP-based haplotyping and resistance determinant analysis showed that 93% of the isolates belonged to a single clade represented by multidrug-resistant H58 lineage I (4.3.1.1), with a maximum pair-wise distance of 22 SNPs. CONCLUSIONS: This study has provided detailed genotypic characterization of the outbreak strain, identified as S. Typhi 4.3.1.1 (H58). The strain has reduced susceptibility to ciprofloxacin due to qnrS carried by an IncN (subtype PST3) plasmid resulting from ongoing evolution to full resistance.


Subject(s)
Drug Resistance, Multiple, Bacterial , Salmonella typhi , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Clone Cells , Drug Resistance, Multiple, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Phylogeny , Salmonella typhi/genetics , Zimbabwe/epidemiology
9.
Article in English | MEDLINE | ID: mdl-34779943

ABSTRACT

This study was designed to characterize extended-spectrum beta-lactamase (ESBL)-producing extra-intestinal pathogenic Escherichia coli (E.coli) (ExPEC) associated with urinary tract infections in nine different geographic regions of Zimbabwe over a 2-year period (2017-2019). A total of 48 ESBL-positive isolates from urine specimen were selected for whole-genome sequencing from 1246 Escherichia coli isolates biobanked at the National Microbiology Reference laboratory using phenotypic susceptibility testing results from the National Escherichia coli Surveillance Programme to provide representation of different geographical regions and year of isolation. The majority of ESBL E. coli isolates produced cefotaximase-Munich (CTX-M)-15, CTX-M-27, and CTX-M-14. In this study, sequence types (ST) 131 and ST410 were the most predominant antimicrobial-resistant clones and responsible for the increase in ESBL-producing E. coli strains since 2017. Novel ST131 complex strains were recorded during the period 2017 to 2018, thus showing the establishment and evolution of this antimicrobial-resistant ESBL clone in Zimbabwe posing an important public health threat. Incompatibility group F plasmids were predominant among ST131 and ST410 isolates with the following replicons recorded most frequently: F1:A2:B20 (9/19, 47%), F2:A1: B (5/19, 26%), and F1:A1:B49 (8/13, 62%). The results indicate the need for continuous tracking of different ESBL ExPEC clones on a global scale, while targeting specific STs (e.g. ST131 and ST410) through control programs will substantially decrease the spread of ESBLs among ExPEC.

10.
J Antimicrob Chemother ; 74(12): 3489-3496, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31504589

ABSTRACT

OBJECTIVES: NDM carbapenemases have spread worldwide. However, little information exists about the impact of NDM-producing Enterobacteriaceae in Spain. By WGS, we sought to elucidate the population structure of NDM-like-producing Klebsiella pneumoniae and Escherichia coli in Spain and to determine the plasmids harbouring blaNDM-like genes. METHODS: High-resolution SNP typing, core-genome MLST and plasmid reconstruction (PlasmidID) were performed on 59 NDM-like-producing K. pneumoniae and 8 NDM-like-producing E. coli isolated over an 8 year period in Spain. RESULTS: Five major epidemic clones of NDM-producing K. pneumoniae caused five important nationwide outbreaks: ST437/NDM-7, ST437/NDM-1, ST147/NDM-1, ST11/NDM-1 and ST101/NDM-1; in contrast, the spread of NDM-producing E. coli was polyclonal. Three blaNDM types were identified: blaNDM-1, 61.2%; blaNDM-7, 32.8%; and blaNDM-5, 6%. Five K. pneumoniae isolates co-produced other carbapenemases (three blaOXA-48 and two blaVIM-1). The average number of acquired resistance genes was higher in K. pneumoniae than in E. coli. The plasmids encoding blaNDM-like genes belonged to IncFII, IncFIB, IncX3, IncR, IncN and IncC types, of which IncF, IncR and IncC were associated with MDR. The genetic surroundings of blaNDM-like genes showed a highly variable region upstream of ISAba125. CONCLUSIONS: In recent years NDM-producing K. pneumoniae and E. coli have emerged in Spain; the spread of a few high-risk K. pneumoniae clones such as ST437/NDM-7, ST437/NDM-1, ST147/NDM-1, ST11/NDM-1 and ST101/NDM-1 have caused several interregional outbreaks. In contrast, the spread of NDM-producing E. coli has been polyclonal. Plasmid types IncFII, IncFIB, IncX3, IncR, IncN and IncC carried blaNDM, and the same IncX3 plasmid was detected in K. pneumoniae and E. coli.


Subject(s)
Escherichia coli/genetics , Klebsiella pneumoniae/genetics , Phylogeny , Plasmids/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Typing Techniques , Drug Resistance, Multiple, Bacterial , Enterobacteriaceae Infections/microbiology , Escherichia coli/classification , Escherichia coli/enzymology , Genome, Bacterial , Humans , Klebsiella pneumoniae/classification , Klebsiella pneumoniae/enzymology , Microbial Sensitivity Tests , Multilocus Sequence Typing , Polymorphism, Single Nucleotide , Spain , Virulence/genetics , Whole Genome Sequencing
11.
J Immunol ; 199(12): 4103-4109, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29127147

ABSTRACT

In mice, the IgG subclass induced after Ag encounter can reflect the nature of the Ag. Th2 Ags such as alum-precipitated proteins and helminths induce IgG1, whereas Th1 Ags, such as Salmonella Typhimurium, predominantly induce IgG2a. The contribution of different IgG isotypes to protection against bacteria such as S. Typhimurium is unclear, although as IgG2a is induced by natural infection, it is assumed this isotype is important. Previously, we have shown that purified S. Typhimurium porins including outer membrane protein OmpD, which induce both IgG1 and IgG2a in mice, provide protection to S. Typhimurium infection via Ab. In this study we report the unexpected finding that mice lacking IgG1, but not IgG2a, are substantially less protected after porin immunization than wild-type controls. IgG1-deficient mice produce more porin-specific IgG2a, resulting in total IgG levels that are similar to wild-type mice. The decreased protection in IgG1-deficient mice correlates with less efficient bacterial opsonization and uptake by macrophages, and this reflects the low binding of outer membrane protein OmpD-specific IgG2a to the bacterial surface. Thus, the Th2-associated isotype IgG1 can play a role in protection against Th1-associated organisms such as S. Typhimurium. Therefore, individual IgG subclasses to a single Ag can provide different levels of protection and the IgG isotype induced may need to be a consideration when designing vaccines and immunization strategies.


Subject(s)
Antibodies, Bacterial/immunology , Immunoglobulin G/immunology , Porins/immunology , Salmonella Vaccines/immunology , Salmonella typhimurium/immunology , Animals , Antigen-Antibody Reactions , Bacterial Adhesion/immunology , Bacterial Proteins/immunology , Cell Line , Female , IgG Deficiency/immunology , Immunization , Immunoglobulin Class Switching , Immunoglobulin Isotypes/immunology , Male , Mice, Inbred C57BL , Phagocytosis/immunology , Salmonella Infections, Animal/prevention & control
12.
Infect Immun ; 86(8)2018 08.
Article in English | MEDLINE | ID: mdl-29784861

ABSTRACT

Salmonella enterica serovar Typhimurium is one of approximately 2,500 distinct serovars of the genus Salmonella but is exceptional in its wide distribution in the environment, livestock, and wild animals. S Typhimurium causes a large proportion of nontyphoidal Salmonella (NTS) infections, accounting for a quarter of infections, second only to S. enterica serovar Enteritidis in incidence. S Typhimurium was once considered the archetypal broad-host-range Salmonella serovar due to its wide distribution in livestock and wild animals, and much of what we know of the interaction of Salmonella with the host comes from research using a small number of laboratory strains of the serovar (LT2, SL1344, and ATCC 14028). But it has become clear that these strains do not reflect the genotypic or phenotypic diversity of S Typhimurium. Here, we review the epidemiological record of S Typhimurium and studies of the host-pathogen interactions of diverse strains of S Typhimurium. We present the concept of distinct pathovariants of S Typhimurium that exhibit diversity of host range, distribution in the environment, pathogenicity, and risk to food safety. We review recent evidence from whole-genome sequencing that has revealed the extent of genomic diversity of S Typhimurium pathovariants, the genomic basis of differences in the level of risk to human and animal health, and the molecular epidemiology of prominent strains. An improved understanding of the impact of genome variation of bacterial pathogens on pathogen-host and pathogen-environment interactions has the potential to improve quantitative risk assessment and reveal how new pathogens evolve.


Subject(s)
Food Microbiology , Genetic Variation , Salmonella Infections, Animal/microbiology , Salmonella Infections/microbiology , Salmonella typhimurium/classification , Salmonella typhimurium/genetics , Animals , Biological Variation, Population , Food Safety , Genotype , Host Specificity , Host-Pathogen Interactions , Humans , Incidence , Molecular Epidemiology , Salmonella Infections/epidemiology , Salmonella Infections, Animal/epidemiology , Salmonella typhimurium/isolation & purification , Salmonella typhimurium/pathogenicity
13.
Environ Microbiol ; 20(11): 4079-4090, 2018 11.
Article in English | MEDLINE | ID: mdl-30450829

ABSTRACT

Contaminated water is a major risk factor associated with the transmission of Salmonella enterica serovar Typhi (S. Typhi), the aetiological agent of human typhoid. However, little is known about how this pathogen adapts to living in the aqueous environment. We used transcriptome analysis (RNA-seq) and transposon mutagenesis (TraDIS) to characterize these adaptive changes and identify multiple genes that contribute to survival. Over half of the genes in the S. Typhi genome altered expression level within the first 24 h following transfer from broth culture to water, although relatively few did so in the first 30 min. Genes linked to central metabolism, stress associated with arrested proton motive force and respiratory chain factors changed expression levels. Additionally, motility and chemotaxis genes increased expression, consistent with a scavenging lifestyle. The viaB-associated gene tviC encoding a glcNAc epimerase that is required for Vi polysaccharide biosynthesis was, along with several other genes, shown to contribute to survival in water. Thus, we define regulatory adaptation operating in S. Typhi that facilitates survival in water.


Subject(s)
Fresh Water/microbiology , Microbial Viability , Salmonella typhi/growth & development , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Humans , Mutagenesis , Plasmids/genetics , Plasmids/metabolism , Polysaccharides, Bacterial/biosynthesis , Salmonella typhi/genetics , Salmonella typhi/metabolism , Typhoid Fever/microbiology
14.
Infect Immun ; 85(9)2017 09.
Article in English | MEDLINE | ID: mdl-28674031

ABSTRACT

The ST313 pathovar of Salmonella enterica serovar Typhimurium contributes to a high burden of invasive disease among African infants and HIV-infected adults. It is characterized by genome degradation (loss of coding capacity) and has increased resistance to antibody-dependent complement-mediated killing compared with enterocolitis-causing strains of S Typhimurium. Vaccination is an attractive disease-prevention strategy, and leading candidates focus on the induction of bactericidal antibodies. Antibody-resistant strains arising through further gene deletion could compromise such a strategy. Exposing a saturating transposon insertion mutant library of S Typhimurium to immune serum identified a repertoire of S Typhimurium genes that, when interrupted, result in increased resistance to serum killing. These genes included several involved in bacterial envelope biogenesis, protein translocation, and metabolism. We generated defined mutant derivatives using S Typhimurium SL1344 as the host. Based on their initial levels of enhanced resistance to killing, yfgA and sapA mutants were selected for further characterization. The S Typhimurium yfgA mutant lost the characteristic Salmonella rod-shaped appearance, exhibited increased sensitivity to osmotic and detergent stress, lacked very long lipopolysaccharide, was unable to invade enterocytes, and demonstrated decreased ability to infect mice. In contrast, the S Typhimurium sapA mutants had similar sensitivity to osmotic and detergent stress and lipopolysaccharide profile and an increased ability to infect enterocytes compared with the wild type, but it had no increased ability to cause in vivo infection. These findings indicate that increased resistance to antibody-dependent complement-mediated killing secondary to genetic deletion is not necessarily accompanied by increased virulence and suggest the presence of different mechanisms of antibody resistance.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Antibodies, Bacterial/immunology , Bacterial Proteins/metabolism , Blood Bactericidal Activity , Complement System Proteins/immunology , Salmonella typhimurium/immunology , Salmonella typhimurium/pathogenicity , ATP-Binding Cassette Transporters/genetics , Animals , Bacterial Proteins/genetics , DNA Transposable Elements , Female , Gene Knockout Techniques , Mice, Inbred C57BL , Mutagenesis, Insertional , Salmonella typhimurium/physiology , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism
15.
Bioinformatics ; 32(23): 3566-3574, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27503221

ABSTRACT

MOTIVATION: Next generation sequencing technologies have provided us with a wealth of information on genetic variation, but predicting the functional significance of this variation is a difficult task. While many comparative genomics studies have focused on gene flux and large scale changes, relatively little attention has been paid to quantifying the effects of single nucleotide polymorphisms and indels on protein function, particularly in bacterial genomics. RESULTS: We present a hidden Markov model based approach we call delta-bitscore (DBS) for identifying orthologous proteins that have diverged at the amino acid sequence level in a way that is likely to impact biological function. We benchmark this approach with several widely used datasets and apply it to a proof-of-concept study of orthologous proteomes in an investigation of host adaptation in Salmonella enterica We highlight the value of the method in identifying functional divergence of genes, and suggest that this tool may be a better approach than the commonly used dN/dS metric for identifying functionally significant genetic changes occurring in recently diverged organisms. AVAILABILITY AND IMPLEMENTATION: A program implementing DBS for pairwise genome comparisons is freely available at: https://github.com/UCanCompBio/deltaBS CONTACT: nicole.wheeler@pg.canterbury.ac.nz or lars.barquist@uni-wuerzburg.deSupplementary information: Supplementary data are available at Bioinformatics online.


Subject(s)
Genome, Bacterial , Genomics/methods , Algorithms , Bacterial Proteins/genetics , Markov Chains , Models, Theoretical , Proteome , Salmonella enterica/genetics , Software
16.
Emerg Infect Dis ; 22(4): 617-24, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26982594

ABSTRACT

Microevolution associated with emergence and expansion of new epidemic clones of bacterial pathogens holds the key to epidemiologic success. To determine microevolution associated with monophasic Salmonella Typhimurium during an epidemic, we performed comparative whole-genome sequencing and phylogenomic analysis of isolates from the United Kingdom and Italy during 2005-2012. These isolates formed a single clade distinct from recent monophasic epidemic clones previously described from North America and Spain. The UK monophasic epidemic clones showed a novel genomic island encoding resistance to heavy metals and a composite transposon encoding antimicrobial drug resistance genes not present in other Salmonella Typhimurium isolates, which may have contributed to epidemiologic success. A remarkable amount of genotypic variation accumulated during clonal expansion that occurred during the epidemic, including multiple independent acquisitions of a novel prophage carrying the sopE gene and multiple deletion events affecting the phase II flagellin locus. This high level of microevolution may affect antigenicity, pathogenicity, and transmission.


Subject(s)
Clonal Evolution/genetics , Disease Outbreaks , Gene Expression Regulation, Bacterial , Salmonella Infections/epidemiology , Salmonella typhimurium/genetics , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Typing Techniques , Clone Cells , DNA Transposable Elements , Drug Resistance, Multiple, Bacterial , Epidemiological Monitoring , Flagellin/genetics , Flagellin/metabolism , Genetic Variation , Genomic Islands , Humans , Italy/epidemiology , Phylogeny , Prophages/genetics , Prophages/isolation & purification , Salmonella Infections/drug therapy , Salmonella Infections/microbiology , Salmonella Infections/transmission , Salmonella typhimurium/classification , Salmonella typhimurium/drug effects , Salmonella typhimurium/virology , United Kingdom/epidemiology
17.
Eur J Immunol ; 45(8): 2299-311, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26036767

ABSTRACT

Soluble flagellin (sFliC) from Salmonella Typhimurium (STm) can induce a Th2 response to itself and coadministered antigens through ligation of TLR5. These properties suggest that sFliC could potentially modulate responses to Th1 antigens like live STm if both antigens are given concurrently. After coimmunization of mice with sFliC and STm there was a reduction in Th1 T cells (T-bet(+) IFN-γ(+) CD4 T cells) compared to STm alone and there was impaired clearance of STm. In contrast, there was no significant defect in the early extrafollicular B-cell response to STm. These effects are dependent upon TLR5 and flagellin expression by STm. The mechanism for these effects is not related to IL-4 induced to sFliC but rather to the effects of sFliC coimmunization on DCs. After coimmunization with STm and sFliC, splenic DCs had a lower expression of costimulatory molecules and profoundly altered kinetics of IL-12 and TNFα expression. Ex vivo experiments using in vivo conditioned DCs confirmed the effects of sFliC were due to altered DC function during a critical window in the coordinated interplay between DCs and naïve T cells. This has marked implications for understanding how limits in Th1 priming can be achieved during infection-induced, Th1-mediated inflammation.


Subject(s)
Cytokines/immunology , Dendritic Cells/immunology , Flagellin/immunology , Salmonella Infections/immunology , Salmonella typhimurium/immunology , Th1 Cells/immunology , Animals , Cytokines/genetics , Dendritic Cells/pathology , Flagellin/genetics , Immunization , Mice , Mice, Knockout , Salmonella Infections/genetics , Salmonella Infections/prevention & control , Salmonella typhimurium/genetics , Th1 Cells/pathology , Toll-Like Receptor 5/genetics , Toll-Like Receptor 5/immunology
18.
J Antimicrob Chemother ; 71(4): 887-96, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26769896

ABSTRACT

OBJECTIVES: The global emergence of OXA-48-producing Klebsiella pneumoniae clones is a significant threat to public health. We used WGS and phylogenetic analysis of Spanish isolates to investigate the population structure of blaOXA-48-like-expressing K. pneumoniae ST11 and ST405 and to determine the distribution of resistance genes and plasmids encoding blaOXA-48-like carbapenemases. METHODS: SNPs identified in whole-genome sequences were used to reconstruct phylogenetic trees, identify resistance determinants and de novo assemble the genomes of 105 blaOXA-48-like-expressing K. pneumoniae isolates. RESULTS: Genome variation was generally lower in outbreak-associated isolates compared with those associated with sporadic infections. The relatively limited variation observed within the outbreak-associated isolates was on average 7-10 SNPs per outbreak. Of 24 isolates from suspected sporadic infections, 7 were very closely related to isolates causing hospital outbreaks and 17 were more diverse and therefore probably true sporadic cases. On average, 14 resistance genes were identified per isolate. The 17 ST405 isolates from sporadic cases of infection had four distinct resistance gene profiles, while the resistance gene profile differed in all ST11 isolates from sporadic cases. Sequence analysis of 94 IncL/M plasmids carrying blaOXA-48-like genes revealed an average of two SNP differences, indicating a conserved plasmid clade. CONCLUSIONS: Whole-genome sequence analysis enabled the discrimination of outbreak and sporadic isolates. Significant inter-regional spread within Spain of highly related isolates was evident for both ST11 and ST405 K. pneumoniae. IncL/M plasmids carrying blaOXA-48-like carbapenemase genes were highly conserved geographically and across the outbreaks, sporadic cases and clones.


Subject(s)
Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Phylogeny , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Cross Infection , DNA, Bacterial/genetics , Disease Outbreaks , Genetic Variation , Humans , Klebsiella Infections/epidemiology , Klebsiella Infections/microbiology , Klebsiella pneumoniae/enzymology , Molecular Epidemiology , Plasmids/genetics , Spain/epidemiology , beta-Lactamases/biosynthesis , beta-Lactamases/genetics
20.
Antimicrob Agents Chemother ; 59(6): 3133-9, 2015.
Article in English | MEDLINE | ID: mdl-25779570

ABSTRACT

Multidrug-resistant bacteria pose a major challenge to the clinical management of infections in resource-poor settings. Although nontyphoidal Salmonella (NTS) bacteria cause predominantly enteric self-limiting illness in developed countries, NTS is responsible for a huge burden of life-threatening bloodstream infections in sub-Saharan Africa. Here, we characterized nine S. Typhimurium isolates from an outbreak involving patients who initially failed to respond to ceftriaxone treatment at a referral hospital in Kenya. These Salmonella enterica serotype Typhimurium isolates were resistant to ampicillin, chloramphenicol, cefuroxime, ceftriaxone, aztreonam, cefepime, sulfamethoxazole-trimethoprim, and cefpodoxime. Resistance to ß-lactams, including to ceftriaxone, was associated with carriage of a combination of blaCTX-M-15, blaOXA-1, and blaTEM-1 genes. The genes encoding resistance to heavy-metal ions were borne on the novel IncHI2 plasmid pKST313, which also carried a pair of class 1 integrons. All nine isolates formed a single clade within S. Typhimurium ST313, the major clone of an ongoing invasive NTS epidemic in the region. This emerging ceftriaxone-resistant clone may pose a major challenge in the management of invasive NTS in sub-Saharan Africa.


Subject(s)
Anti-Bacterial Agents/pharmacology , Salmonella typhimurium/drug effects , Ampicillin/pharmacology , Bacterial Proteins/genetics , Ceftriaxone , Cefuroxime/pharmacology , Chloramphenicol/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Kenya , Microbial Sensitivity Tests , Plasmids/genetics , Salmonella typhimurium/genetics , Serogroup
SELECTION OF CITATIONS
SEARCH DETAIL