Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Proc Biol Sci ; 284(1857)2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28637853

ABSTRACT

Methane-derived carbon, incorporated by methane-oxidizing bacteria, has been identified as a significant source of carbon in food webs of many lakes. By measuring the stable carbon isotopic composition (δ13C values) of particulate organic matter, Chironomidae and Daphnia spp. and their resting eggs (ephippia), we show that methane-derived carbon presently plays a relevant role in the food web of hypertrophic Lake De Waay, The Netherlands. Sediment geochemistry, diatom analyses and δ13C measurements of chironomid and Daphnia remains in the lake sediments indicate that oligotrophication and re-eutrophication of the lake during the twentieth century had a strong impact on in-lake oxygen availability. This, in turn, influenced the relevance of methane-derived carbon in the diet of aquatic invertebrates. Our results show that, contrary to expectations, methane-derived relative to photosynthetically produced organic carbon became more relevant for at least some invertebrates during periods with higher nutrient availability for algal growth, indicating a proportionally higher use of methane-derived carbon in the lake's food web during peak eutrophication phases. Contributions of methane-derived carbon to the diet of the investigated invertebrates are estimated to have ranged from 0-11% during the phase with the lowest nutrient availability to 13-20% during the peak eutrophication phase.


Subject(s)
Carbon/chemistry , Food Chain , Methane/chemistry , Animals , Carbon Isotopes/analysis , Chironomidae , Daphnia , Eutrophication , Lakes , Netherlands
2.
Nat Commun ; 5: 4914, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25208610

ABSTRACT

Comparisons of climate model hindcasts with independent proxy data are essential for assessing model performance in non-analogue situations. However, standardized palaeoclimate data sets for assessing the spatial pattern of past climatic change across continents are lacking for some of the most dynamic episodes of Earth's recent past. Here we present a new chironomid-based palaeotemperature dataset designed to assess climate model hindcasts of regional summer temperature change in Europe during the late-glacial and early Holocene. Latitudinal and longitudinal patterns of inferred temperature change are in excellent agreement with simulations by the ECHAM-4 model, implying that atmospheric general circulation models like ECHAM-4 can successfully predict regionally diverging temperature trends in Europe, even when conditions differ significantly from present. However, ECHAM-4 infers larger amplitudes of change and higher temperatures during warm phases than our palaeotemperature estimates, suggesting that this and similar models may overestimate past and potentially also future summer temperature changes in Europe.

SELECTION OF CITATIONS
SEARCH DETAIL