Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phys Rev Lett ; 131(19): 198201, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38000418

ABSTRACT

A droplet of a classical liquid surrounded by a cold gas placed on a hot substrate is accompanied by unremitting internal circulations, while the droplet remains immobile. Two identical cells with opposite sense of circulation form in the interior due to the thermocapillary effect induced by the gas and substrate temperature difference. Under the same conditions, a droplet composed of an odd viscous liquid exerts a compressive stress on the cell rotating in one sense and tensile on the cell rotating in the opposite sense resulting in a tilted droplet configuration. A sufficiently strong thermal gradient leads the contact angles to overcome hysteresis effects and induces droplet migration.

2.
Phys Rev Lett ; 110(23): 234503, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-25167500

ABSTRACT

In this Letter a hydrodynamic theory of liquid slippage on a solid substrate near a moving contact line is proposed. A family of spatially varying slip lengths in the Navier slip law recovers the results of past formulations for slip in continuum theories and molecular dynamics simulations and is consistent with well-established experimental observations of complete wetting. This formulation gives a general approach for continuum hydrodynamic theories. New fluid flow behaviors are also predicted yet to be seen in experiment.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(1 Pt 2): 016321, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22400671

ABSTRACT

We introduce a new mechanism for the propulsion and separation by chirality of small ferromagnetic particles suspended in a liquid. Under the action of a uniform dc magnetic field H and an ac electric field E isomers with opposite chirality move in opposite directions. Such a mechanism could have a significant impact on a wide range of emerging technologies. The component of the chiral velocity that is odd in H is found to be proportional to the intrinsic orbital and spin angular momentum of the magnetized electrons. This effect arises because a ferromagnetic particle responds to the applied torque as a small gyroscope.

SELECTION OF CITATIONS
SEARCH DETAIL