Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Mol Pharmacol ; 103(3): 166-175, 2023 03.
Article in English | MEDLINE | ID: mdl-36804202

ABSTRACT

Mucin 1 (MUC1) is aberrantly expressed in various cancers and implicated in cancer progression and chemoresistance. Although the C-terminal cytoplasmic tail of MUC1 is involved in signal transduction, promoting chemoresistance, the role of the extracellular MUC1 domain [N-terminal glycosylated domain (NG)-MUC1] remains unclear. In this study, we generated stable MCF7 cell lines expressing MUC1 and cytoplasmic tail-deficient MUC1 (MUC1ΔCT) and show that NG-MUC1 is involved in drug resistance by modulating the transmembrane permeation of various compounds without cytoplasmic tail signaling. Heterologous expression of MUC1ΔCT increased cell survival in treating anticancer drugs (such as 5-fluorouracil, cisplatin, doxorubicin, and paclitaxel), in particular by causing an approximately 150-fold increase in the IC50 of paclitaxel, a lipophilic drug, compared with the control [5-fluorouracil (7-fold), cisplatin (3-fold), and doxorubicin (18-fold)]. The uptake studies revealed that accumulations of paclitaxel and Hoechst 33342, a membrane-permeable nuclear staining dye, were reduced to 51% and 45%, respectively, in cells expressing MUC1ΔCT via ABCB1/P-gp-independent mechanisms. Such alterations in chemoresistance and cellular accumulation were not observed in MUC13-expressing cells. Furthermore, we found that MUC1 and MUC1ΔCT increased the cell-adhered water volume by 2.6- and 2.7-fold, respectively, suggesting the presence of a water layer on the cell surface created by NG-MUC1. Taken together, these results suggest that NG-MUC1 acts as a hydrophilic barrier element against anticancer drugs and contributes to chemoresistance by limiting the membrane permeation of lipophilic drugs. Our findings could help better the understanding of the molecular basis of drug resistance in cancer chemotherapy. SIGNIFICANCE STATEMENT: Membrane-bound mucin (MUC1), aberrantly expressed in various cancers, is implicated in cancer progression and chemoresistance. Although the MUC1 cytoplasmic tail is involved in proliferation-promoting signal transduction thereby leading to chemoresistance, the significance of the extracellular domain remains unclear. This study clarifies the role of the glycosylated extracellular domain as a hydrophilic barrier element to limit the cellular uptake of lipophilic anticancer drugs. These findings could help better the understanding of the molecular basis of MUC1 and drug resistance in cancer chemotherapy.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Mucin-1/metabolism , Cisplatin/pharmacology , Drug Resistance, Neoplasm , Antineoplastic Agents/pharmacology , Doxorubicin/pharmacology , Cell Membrane/metabolism , Paclitaxel/pharmacology , Fluorouracil/pharmacology
2.
J Biol Chem ; 298(4): 101800, 2022 04.
Article in English | MEDLINE | ID: mdl-35257743

ABSTRACT

Monocarboxylate transporter 7 (MCT7) is an orphan transporter expressed in the liver, brain, and in several types of cancer cells. It has also been reported to be a survival factor in melanoma and breast cancers. However, this survival mechanism is not yet fully understood due to MCT7's unidentified substrate(s). Therefore, here we sought to identify MCT7 substrate(s) and characterize the transport mechanisms by analyzing amino acid transport in HEK293T cells and polarized Caco-2 cells. Analysis of amino acids revealed significant rapid reduction in taurine from cells transfected with enhanced green fluorescent protein-tagged MCT7. We found that taurine uptake and efflux by MCT7 was pH-independent and that the uptake was not saturated in the presence of taurine excess of 200 mM. Furthermore, we found that monocarboxylates and acidic amino acids inhibited MCT7-mediated taurine uptake. These results imply that MCT7 may be a low-affinity facilitative taurine transporter. We also found that MCT7 was localized at the basolateral membrane in polarized Caco-2 cells and that the induction of MCT7 expression in polarized Caco-2 cells enhanced taurine permeation. Finally, we demonstrated that interactions of MCT7 with ancillary proteins basigin/CD147 and embigin/GP70 enhanced MCT7-mediated taurine transport. In summary, these findings reveal that taurine is a novel substrate of MCT7 and that MCT7-mediated taurine transport might contribute to the efflux of taurine from cells.


Subject(s)
Monocarboxylic Acid Transporters , Symporters , Taurine , Biological Transport/genetics , Caco-2 Cells , HEK293 Cells , Humans , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Symporters/genetics , Symporters/metabolism , Taurine/metabolism
3.
Mol Pharm ; 20(1): 491-499, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36458938

ABSTRACT

The therapeutic modalities that involve the endocytosis pathway, including antibody-drug conjugates (ADCs), have recently been developed. Since the drug escape from endosomes/lysosomes is a determinant of their efficacy, it is important to optimize the escape, and the cellular evaluation system is needed. SLC46A3, a lysosomal membrane protein, has been implicated in the pharmacological efficacy of trastuzumab emtansine (T-DM1), a noncleavable ADC used for the treatment of breast cancer, and the cellular uptake efficacy of lipid-based nanoparticles. Recently, we identified the SLC46A3 function as a proton-coupled steroid conjugate and bile acid transporter, which can directly transport active catabolites of T-DM1. Thus, the rapid and convenient assay systems for evaluating the SLC46A3 function may help to facilitate ADC development and to clarify the physiological roles in endocytosis. Here, we show that SLC46A3 dC, which localizes to the plasma membrane owing to lacking a lysosomal-sorting motif, has a great ability to transport 5-carboxyfluorescein (5-CF), a fluorescent probe, in a pH-dependent manner. 5-CF uptake mediated by SLC46A3 was significantly inhibited by compounds reported to be SLC46A3 substrates/inhibitors and competitively inhibited by estrone 3-sulfate, a typical SLC46A3 substrate. The inhibition assays followed by uptake studies revealed that SG3199, a pyrrolobenzodiazepine dimer, which has been used as an ADC payload, is a substrate of SLC46A3. Accordingly, the fluorescence-based assay system for the SLC46A3 function using 5-CF can provide a valuable tool to evaluate the interaction of drugs/drug candidates with SLC46A3.


Subject(s)
Breast Neoplasms , Immunoconjugates , Maytansine , Humans , Female , Trastuzumab/pharmacology , Maytansine/pharmacology , Maytansine/chemistry , Fluorescence , Ado-Trastuzumab Emtansine , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Immunoconjugates/therapeutic use , Receptor, ErbB-2/metabolism
4.
Mol Pharm ; 20(12): 6130-6139, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37971309

ABSTRACT

Macrolides are widely used for the long-term treatment of infections and chronic inflammatory diseases. The pharmacokinetic features of macrolides include extensive tissue distribution because of favorable membrane permeability and accumulation within lysosomes. Trastuzumab emtansine (T-DM1), a HER2-targeting antibody-drug conjugate (ADC), is catabolized in the lysosomes, where Lys-SMCC-DM1, a potent cytotoxic agent, is processed by proteinase degradation and subsequently released from the lysosomes to the cytoplasm through the lysosomal membrane transporter SLC46A3, resulting in an antitumor effect. We recently demonstrated that erythromycin and clarithromycin inhibit SLC46A3 and attenuate the cytotoxicity of T-DM1; however, the effect of other macrolides and ketolides has not been determined. In this study, we evaluated the effect of macrolide and ketolide antibiotics on T-DM1 cytotoxicity in a human breast cancer cell line, KPL-4. Macrolides used in the clinic, such as roxithromycin, azithromycin, and josamycin, as well as solithromycin, a ketolide under clinical development, significantly attenuated T-DM1 cytotoxicity in addition to erythromycin and clarithromycin. Of these, azithromycin was the most potent inhibitor of T-DM1 efficacy. These antibiotics significantly inhibited the transport function of SLC46A3 in a concentration-dependent manner. Moreover, these compounds extensively accumulated in the lysosomes at the levels estimated to be 0.41-13.6 mM when cells were incubated with them at a 2 µM concentration. The immunofluorescence staining of trastuzumab revealed that azithromycin and solithromycin inhibit the degradation of T-DM1 in the lysosomes. These results suggest that the attenuation of T-DM1 cytotoxicity by macrolide and ketolide antibiotics involves their lysosomal accumulation and results in their greater lysosomal concentrations to inhibit the SLC46A3 function and T-DM1 degradation. This suggests a potential drug-ADC interaction during cancer chemotherapy.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Immunoconjugates , Ketolides , Maytansine , Humans , Female , Ado-Trastuzumab Emtansine , Breast Neoplasms/pathology , Ketolides/metabolism , Ketolides/therapeutic use , Immunoconjugates/therapeutic use , Azithromycin , Clarithromycin/pharmacology , Maytansine/pharmacology , Maytansine/therapeutic use , Receptor, ErbB-2/metabolism , Antibodies, Monoclonal, Humanized/therapeutic use , Trastuzumab/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/metabolism , Lysosomes/metabolism , Anti-Bacterial Agents/therapeutic use
5.
Molecules ; 26(21)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34770805

ABSTRACT

As advanced synthetic technology has enabled drug candidate development with complex structure, resulting in low solubility and membrane permeability, the strategies to improve poorly absorbed drug bioavailability have attracted the attention of pharmaceutical companies. It has been demonstrated that nitric oxide (NO), a vital signaling molecule that plays an important role in various physiological systems, affects intestinal drug absorption. However, NO and its oxidants are directly toxic to the gastrointestinal tract, thereby limiting their potential clinical application as absorption enhancers. In this study, we show that sodium nitroprusside (SNP), an FDA-approved vasodilator, enhances the intestinal absorption of lipophilic drugs in the proximal parts of the small intestine in rats. The SNP pretreatment of the rat gastrointestinal sacs significantly increased griseofulvin and flurbiprofen permeation in the duodenum and jejunum but not in the ileum and colon. These SNP-related enhancement effects were attenuated by the co-pretreatment with dithiothreitol or c-PTIO, an NO scavenger. The permeation-enhancing effects were not observed in the case of antipyrine, theophylline, and propranolol in the duodenum and jejunum. Furthermore, the SNP treatment significantly increased acidic glycoprotein release from the mucosal layers specifically in the duodenum and jejunum but not in the ileum and colon. These results suggest that SNP increases lipophilic drug membrane permeability specifically in the proximal region of the small intestine through disruption of the mucosal layer.


Subject(s)
Cell Membrane Permeability/drug effects , Intestinal Absorption/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Nitroprusside/pharmacology , Pharmaceutical Preparations/metabolism , Animals , Nitric Oxide/metabolism , Nitroprusside/chemistry , Rats
6.
Drug Metab Dispos ; 47(4): 386-391, 2019 04.
Article in English | MEDLINE | ID: mdl-30622163

ABSTRACT

A recent clinical study reported that the ingestion of apple juice (AJ) markedly reduced the plasma concentration of atenolol; however, our in vitro study showed that atenolol may not be a substrate of organic anion transporting polypeptide 2B1 (OATP2B1), so this AJ-atenolol interaction cannot be explained by inhibition of OATP2B1. On the other hand, we more recently showed that the solution osmolality influences gastrointestinal (GI) water volume, and this may indirectly affect intestinal drug absorption. In this study, we examined whether the osmolality dependence of water dynamics can account for AJ-atenolol interactions by evaluating the GI water volume and the atenolol aborption in the presence of AJ in rats. Water absorption was highest in purified water, followed by saline and isosmotic mannitol solution, and the lowest in AJ, confirming that water absorption is indeed osmolality-dependent. Interestingly, AJ showed apparent water secretion into the intestinal lumen. The intestinal concentration of FD-4, a nonpermeable compound, after administration in AJ was lower than the initial concentration, whereas that in purified water was greater than the initial concentration. Further, the fraction of atenolol absorbed in intestine was significantly lower in AJ or hyperosmotic mannitol solution (adjusted to the osmolality of AJ) than after administration in purified water. Comparable results were observed in an in vivo pharmacokinetic study in rats. Our results indicate that orally administered AJ has a capacity to modulate luminal water volume depending on the osmolality, and this effect may result in significant AJ-atenolol interactions.


Subject(s)
Atenolol/pharmacokinetics , Food-Drug Interactions/physiology , Malus/chemistry , Animals , Fruit and Vegetable Juices , Intestinal Absorption/physiology , Intestinal Mucosa/metabolism , Intestines , Male , Organic Anion Transporters/metabolism , Osmolar Concentration , Rats , Rats, Wistar
7.
Pharm Res ; 36(11): 162, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31529336

ABSTRACT

PURPOSE: Mucins are the principal glycoproteins in mucus and have been implicated in the limitation of intestinal drug absorption; however, the contribution of these molecules to intestinal drug absorption remains unclear. In this study, the relationship between the effect of the mucus layer on intestinal drug permeation and mucin distribution in different parts of the rat gastrointestinal tract was evaluated. METHODS: The intestinal permeability of various lipophilic drugs in rat small intestine was evaluated using the in vitro sac method. The expression profiles of mucin mRNA and proteins were evaluated by quantitative real-time RT-PCR and western blotting, respectively. RESULTS: The intestinal permeability of griseofulvin and antipyrine was enhanced by dithiothreitol (DTT) treatment in the proximal small intestine, such as duodenum and jejunum, but not in the distal regions. The mRNA expression analysis of rat mucin genes revealed that the intestinal expression of Muc5ac was considerably higher in the duodenum, whereas that of Muc1, Muc2, and Muc3A was gradually increased toward the lower intestine. In addition, Muc5ac protein was detected only in the luminal fluids from the proximal small intestine after DTT treatment. CONCLUSIONS: Mucus limits the intestinal permeation of lipophilic drugs in the rat proximal small intestine, in which Muc5ac may be involved.


Subject(s)
Antipyrine/pharmacology , Griseofulvin/pharmacology , Intestine, Small/metabolism , Liposomes , Membrane Glycoproteins/metabolism , Mucins/metabolism , Animals , Antipyrine/metabolism , Drug Compounding , Griseofulvin/metabolism , Intestinal Absorption , Mucins/genetics , Rats
8.
Biochem Biophys Res Commun ; 495(3): 2152-2157, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29273507

ABSTRACT

Bioluminescence (BL) imaging based on d-luciferin (d-luc)-luciferase reaction allows noninvasive and real-time monitoring of luciferase-expressing cells. Because BL intensity depends on photons generated through the d-luc-luciferase reaction, an approach to increase intracellular levels of d-luc could improve the detection sensitivity. In the present study, we showed that organic anion transporter 1 (OAT1) is useful, as a d-luc transporter, in boosting the BL intensity in luciferase-expressing cells. Functional screening of several transporters showed that the expression of OAT1 in HEK293 cells stably expressing Pyrearinus termitilluminans luciferase (HEK293/eLuc) markedly enhanced BL intensity in the presence of d-luc. When OAT1 was transiently expressed in HEK293 cells, intracellular accumulation of d-luc was higher than that in control cells, and the specific d-luc uptake mediated by OAT1 was saturable with a Michaelis constant (Km) of 0.23 µM. The interaction between OAT1 and d-luc was verified using 6-carboxyfluorescein, a typical substrate of OAT1, which showed that d-luc inhibited the uptake of 6-carboxyfluorescein mediated by OAT1. BL intensity was concentration-dependent at steady states in HEK293/eLuc cells stably expressing OAT1, and followed Michaelis-Menten kinetics with an apparent Km of 0.36 µM. In addition, the enhanced BL was significantly inhibited by OAT1-specific inhibitors. Thus, OAT1-mediated transport of d-luc could be a rate-limiting step in the d-luc-luciferase reaction. Furthermore, we found that expressing OAT1 in HEK293/eLuc cells implanted subcutaneously in mice also significantly increased the BL after intraperitoneal injection of d-luc. Our findings suggest that because OAT1 is capable of transporting d-luc, it can also be used to improve visualization and monitoring of luciferase-expressing cells.


Subject(s)
Benzothiazoles/metabolism , Image Enhancement/methods , Luciferases/metabolism , Luminescent Measurements/methods , Organic Anion Transport Protein 1/metabolism , Genes, Reporter/genetics , HEK293 Cells , Humans , Luciferases/genetics , Molecular Imaging/methods , Reproducibility of Results , Sensitivity and Specificity
9.
PLoS One ; 19(6): e0306058, 2024.
Article in English | MEDLINE | ID: mdl-38935605

ABSTRACT

Mucosal-delivered drugs have to pass through the mucus layer before absorption through the epithelial cell membrane. Although there has been increasing interest in polymeric mucins, a major structural component of mucus, potentially acting as important physiological regulators of mucosal drug absorption, there are no reports that have systematically evaluated the interaction between mucins and drugs. In this study, we assessed the potential interaction between human polymeric mucins (MUC2, MUC5B, and MUC5AC) and various drugs with different chemical profiles by simple centrifugal method and fluorescence analysis. We found that paclitaxel, rifampicin, and theophylline likely induce the aggregation of MUC5B and/or MUC2. In addition, we showed that the binding affinity of drugs for polymeric mucins varied, not only between individual drugs but also among mucin subtypes. Furthermore, we demonstrated that deletion of MUC5AC and MUC5B in A549 cells increased the cytotoxic effects of cyclosporin A and paclitaxel, likely due to loss of mucin-drug interaction. In conclusion, our results indicate the necessity to determine the binding of drugs to mucins and their potential impact on the mucin network property.


Subject(s)
Mucin 5AC , Paclitaxel , Humans , Paclitaxel/pharmacology , Paclitaxel/metabolism , Mucin 5AC/metabolism , Mucin 5AC/genetics , A549 Cells , Drug Interactions , Mucin-5B/metabolism , Mucin-5B/genetics , Mucins/metabolism , Mucin-2/metabolism , Mucin-2/genetics , Rifampin/pharmacology , Cyclosporine/pharmacology , Protein Binding
10.
J Pharm Sci ; 113(4): 1113-1120, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38160712

ABSTRACT

Oral drug absorption involves drug permeation across the apical and basolateral membranes of enterocytes. Although transporters mediating the influx of anionic drugs in the apical membranes have been identified, transporters responsible for efflux in the basolateral membranes remain unclear. Monocarboxylate transporter 6 (MCT6/SLC16A5) has been reported to localize to the apical and basolateral membranes of human enterocytes and to transport organic anions such as bumetanide and nateglinide in the Xenopus oocyte expression system; however, its transport functions have not been elucidated in detail. In this study, we characterized the function of MCT6 expressed in HEK293T cells and explored fluorescent probes to more easily evaluate MCT6 function. The results illustrated that MCT6 interacts with CD147 to localize at the plasma membrane. When the uptake of various fluorescein derivatives was examined in NaCl-free uptake buffer (pH 5.5), the uptake of 5-carboxyfluorescein (5-CF) was significantly greater in MCT6 and CD147-expressing cells. MCT6-mediated 5-CF uptake was saturable with a Km of 1.07 mM and inhibited by several substrates/inhibitors of organic anion transporters and extracellular Cl ion with an IC50 of 53.7 mM. These results suggest that MCT6 is a chloride-sensitive organic anion transporter that can be characterized using 5-CF as a fluorescent probe.


Subject(s)
Organic Anion Transporters , Animals , Humans , Organic Anion Transporters/metabolism , Chlorides/metabolism , HEK293 Cells , Biological Transport , Fluoresceins , Mammals/metabolism
11.
Nutrients ; 15(16)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37630718

ABSTRACT

SLC16A13, which encodes the monocarboxylate transporter 13 (MCT13), is a susceptibility gene for type 2 diabetes and is expressed in the liver and duodenum. Some peptidase-resistant oligopeptides are absorbed in the gastrointestinal tract and affect glycemic control in the body. Their efficient absorption is mediated by oligopeptide transporter(s) at the apical and basolateral membranes of the intestinal epithelia; however, the molecules responsible for basolateral oligopeptide transport have not been identified. In this study, we examined whether MCT13 functions as a novel basolateral oligopeptide transporter. We evaluated the uptake of oligopeptides and peptidomimetics in MCT13-transfected cells. The uptake of cephradine, a probe for peptide transport system(s), significantly increased in MCT13-transfected cells, and this increase was sensitive to membrane potential. The cellular accumulation of bioactive peptides, such as anserine and carnosine, was decreased by MCT13, indicating MCT13-mediated efflux transport activity. In polarized Caco-2 cells, MCT13 was localized at the basolateral membrane. MCT13 induction enhanced cephradine transport in an apical-to-basal direction across Caco-2 cells. These results indicate that MCT13 functions as a novel efflux transporter of oligopeptides and peptidomimetics, driven by electrochemical gradients across the plasma membrane, and it may be involved in the transport of these compounds across the intestinal epithelia.


Subject(s)
Diabetes Mellitus, Type 2 , Peptidomimetics , Humans , Caco-2 Cells , Cephradine , Cell Membrane , Oligopeptides
12.
Sci Rep ; 12(1): 6153, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35418571

ABSTRACT

Cyclic peptides are good candidates for orally delivered therapeutics, however, issues remain in their development due to low intestinal permeability. Although some of the biological factors have been reported that regulate intestinal permeation of cyclic peptides, the influence of the mucus barrier, a major hurdle to epithelial drug delivery, on cyclic peptide bioavailability is unclear. In this study, we show that the lipophilic cyclic peptide, cyclosporin A (CsA), interacted with, and likely induced aggregation, of polymeric, gel-forming mucins (MUC2, MUC5AC and MUC5B) which underpin the mucus gel-networks in the gastrointestinal tract. Under similar conditions, two other cyclic peptides (daptomycin and polymyxin B) did not cause mucin aggregation. Using rate-zonal centrifugation, purified MUC2, MUC5AC and MUC5B mucins sedimented faster in the presence of CsA, with a significant increase in mucins in the pellet fraction. In contrast, mucin sedimentation profiles were largely unaltered after treatment with daptomycin or polymyxin B. CsA increased MUC5B sedimentation was concentration-dependent, and sedimentation studies using recombinant mucin protein domains suggests CsA most likely causes aggregation of the relatively non-O-glycosylated N-terminal and C-terminal regions of MUC5B. Furthermore, the aggregation of the N-terminal region, but not the C-terminal region, was affected by pH. CsA has partially N-methylated amide groups, this unique molecular structure, not present in daptomycin and polymyxin B, may potentially be involved in interaction with gel-forming mucin. Taken together, our results indicate that the interaction of gel-forming mucins with the cyclic peptide CsA is mediated at the N- and C-terminal domains of mucin polymers under physiological conditions. Our findings demonstrate that the mucus barrier is an important physiological factor regulating the intestinal permeation of cyclic peptides in vivo.


Subject(s)
Cyclosporine , Daptomycin , Cyclosporine/metabolism , Cyclosporine/pharmacology , Mucin 5AC/metabolism , Mucin-2/metabolism , Mucin-5B/metabolism , Mucus/metabolism , Peptides, Cyclic/metabolism , Polymyxin B
13.
J Pharm Sci ; 111(5): 1531-1541, 2022 05.
Article in English | MEDLINE | ID: mdl-35090865

ABSTRACT

The aim of this study was to investigate the contributions of multiple transport mechanisms to the intestinal absorption of metformin, focusing on OCT3, PMAT, THTR2, SERT and OCTN2. We also assessed the impact of these transporters on the nonlinear absorption of metformin. Uptake studies with MDCKII cells expressing OCT3, PMAT, THTR2 or SERT confirmed that metformin is a substrate of these transporters. Decynium22 strongly inhibited metformin uptake mediated by all the transporters. 7-Cyclopentyl inhibited OCT3- and THTR2-mediated uptake of metformin. AG835, thiamine and paroxetine specifically inhibited PMAT-, THTR2- and SERT-mediated uptake of metformin, respectively. Using these inhibitors, the relative contributions of OCT3, PMAT, THTR2, SERT, OCTN2 and others to the intestinal permeation of metformin across Caco-2 cells were estimated to be 9.77%, 9.68%, 22.2%, 1.52%, 0% and 0.66%, respectively. Concentration-dependent analysis of metformin uptake by Caco-2 cells revealed nonlinear kinetics with the similar Km(app) value to the value for THTR2. Further in situ absorption study demonstrated that rat intestinal permeability of metformin was significantly decreased in the presence of decynium22, 7-cyclopentyl and thiamine. The present study indicated that THTR2 is the major determinant of the nonlinear absorption of metformin, although multiple transport mechanisms contribute to its intestinal absorption.


Subject(s)
Metformin , Animals , Biological Transport , Caco-2 Cells , Humans , Intestinal Absorption , Kinetics , Membrane Transport Proteins/metabolism , Rats , Thiamine/pharmacology
14.
PNAS Nexus ; 1(3): pgac063, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36741448

ABSTRACT

Antibody-drug conjugates (ADCs) represent a new class of cancer therapeutics that enable targeted delivery of cytotoxic drugs to cancer cells. Although clinical efficacy has been demonstrated for ADC therapies, resistance to these conjugates may occur. Recently, SLC46A3, a lysosomal membrane protein, was revealed to regulate the efficacy of trastuzumab emtansine (T-DM1), a noncleavable ADC that has been widely used for treating breast cancer. However, the role of SLC46A3 in mediating T-DM1 cytotoxicity remains unclear. In this study, we discovered the function of SLC46A3 as a novel proton-coupled steroid conjugate and bile acid transporter. SLC46A3 preferentially recognized lipophilic steroid conjugates and bile acids as endogenous substrates. In addition, we found that SLC46A3 directly transports Lys-SMCC-DM1, a major catabolite of T-DM1, and potent SLC46A3 inhibitors attenuate the cytotoxic effects of T-DM1, suggesting a role in the escape of Lys-SMCC-DM1 from the lysosome into the cytoplasm. Our findings reveal the molecular mechanism by which T-DM1 kills cancer cells and may contribute to the rational development of ADCs that target SLC46A3.

15.
Biol Pharm Bull ; 34(3): 408-14, 2011.
Article in English | MEDLINE | ID: mdl-21372393

ABSTRACT

P-glycoprotein is one of the most important transporters in the ATP binding cassette transporter. Moreover, it is well known that the efficacy of immunosuppressants, which are used after organ transplantation, is controlled by P-glycoprotein (P-gp). We investigated how ischemia/reperfusion (I/R), which occurs after transplantation, influences the expression level and function of P-gp. To clarify the influence of intestinal I/R on the localization of P-gp, an intestinal ischemia model was produced using a spring scale and surgical sutures for 1 h, followed by reperfusion for 24 h. The expression levels of mRNA and protein of P-gp were examined. The protein expression levels of P-gp in ileal homogenate and the brush border membrane (BBM) were significantly decreased until 3 h after reperfusion. While the protein expression level of P-gp in homogenate showed a tendency to increase, that in the BBM continued to significantly decrease until 24 h after reperfusion. In contrast, the protein expression level of P-gp in the basolateral membrane (BLM) increased significantly until 24 h after reperfusion. While no significant change in multidrug resistance (mdr)-1a mRNA was found, the levels of mdr-1b and mdr-2 significantly increased during intestinal I/R. In addition, the levels of inflammatory cytokines mRNA and nitric oxide (NO) also significantly increased. It was shown that mdr-1b and mdr-2 mRNA strongly participate in the recovery of P-gp protein level after intestinal I/R. We detected the abnormal localization of P-gp in the ileal membrane during intestinal I/R, suggesting NO and/or inflammatory cytokines participate in the abnormal localization of P-gp.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Ileum/metabolism , Inflammation Mediators/metabolism , Intestinal Mucosa/blood supply , Ischemia/metabolism , Organ Transplantation , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Animals , Biological Transport , Cytokines/genetics , Cytokines/metabolism , Immunosuppressive Agents , Intestinal Mucosa/metabolism , Male , Nitric Oxide/metabolism , RNA, Messenger/metabolism , Rats , Rats, Wistar , Reperfusion
16.
Eur J Drug Metab Pharmacokinet ; 35(3-4): 89-95, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21302034

ABSTRACT

Ischemia/reperfusion (I/R) injury must be overcome in order to succeed in small intestinal transplantation. Reactive oxygen species (ROS) are generated by I/R, and they induce lipid peroxidation which is one of the causes of mucosal lesion. We previously reported the protection effects of antioxidants to I/R injury in the in vitro study. In the present study, we examined the inhibitive effect of antioxidants on intestinal I/R injury in the in vivo study. Intestinal ischemia was induced in Wistar/ST rats using the spring scale and the surgical suture for 1 h, followed by reperfusion for 1 h. We used 4,5-dihydroxy-1,3-benzene-disulfonic acid (Tiron), astaxanthin (ATX) and epigallocatechin gallate (EGCG) as antioxidants. The inhibitive effects on mucosal lesion, opening of TJ and decrease in protein expression level of P-gp by in vivo intestinal I/R were admitted by three kinds of antioxidant. Tiron and EGCG inhibited P-gp function but ATX did not. Therefore, for the use of P-gp substrate like immunosuppressants after the intestinal transplantation, ATX, which does not inhibit P-gp is considered to be effective for intestinal I/R injury.


Subject(s)
Antioxidants/pharmacology , Intestines/drug effects , Reperfusion Injury/drug therapy , 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Catechin/analogs & derivatives , Catechin/pharmacology , Dextrans/pharmacokinetics , Fluorescein-5-isothiocyanate/analogs & derivatives , Fluorescein-5-isothiocyanate/pharmacokinetics , Intestinal Absorption/drug effects , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestines/pathology , Male , Rats , Rats, Wistar , Reperfusion Injury/physiopathology , Xanthophylls/pharmacology
17.
Drug Metab Pharmacokinet ; 35(3): 281-287, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32249133

ABSTRACT

SLC16A12/MCT12 has been recently identified as a creatine transporter in a Xenopus oocyte expression system; however, the mechanism, by which MCT12 transports creatine, remains unclear. This study was performed to determine the functional and molecular characteristics of MCT12 in mammalian cells. The results showed that the uptake of [14C]creatine was not significantly increased in HEK293 cells transiently expressing MCT12 with or without CD147, a molecular chaperone, compared with mock cells. When [14C]creatine was accumulated in the cells with the aid of SLC6A8/CRT1, a concentrative creatine transporter, followed by assessing the remaining intracellular [14C]creatine after initiating efflux, coexpression of MCT12 resulted in a decrease in the intracellular [14C]creatine and remarkably enhanced the efflux of [14C]creatine from the cells in a time-dependent manner. This activity was not affected by extracellular pH. The creatine efflux activity involved dissipation by the mutations of conserved charged amino acids such as Arg37, Asp65 and Asp299 in the transmembrane domains, indicating direct involvement of MCT12 in the creatine efflux. These results suggest that MCT12 mediates facilitative diffusion of creatine, depending on the concentration gradient across the plasma membrane in mammalian cells. The finding may provide important clues to understanding the disposition kinetics of creatine and its derivatives.


Subject(s)
Creatine/metabolism , Monocarboxylic Acid Transporters/metabolism , Animals , Cell Membrane/chemistry , Cell Membrane/metabolism , Cells, Cultured , Creatine/chemistry , Dogs , HEK293 Cells , Humans , Kinetics , Monocarboxylic Acid Transporters/genetics
18.
J Pharm Sci ; 106(9): 2889-2894, 2017 09.
Article in English | MEDLINE | ID: mdl-28450238

ABSTRACT

Intestinal water absorption is reportedly influenced by luminal osmolality. In this study, we examined whether differences in the osmolality of the vehicle used for oral administration of drugs influence luminal water volume and drug absorption in the gastrointestinal (GI) tract, by means of in situ rat intestinal closed loop studies using solutions of fluorescein isothiocyanate dextran 4000 (a non-absorbable compound), atenolol (a low-permeability drug), and antipyrine (a high-permeability drug) in various solvents. Determination of the remaining fraction of water revealed the following rank order for water absorption in rat jejunum: purified water > saline > phosphate buffer = isosmotic mannitol solution. The luminal concentration of fluorescein isothiocyanate-dextran 4000 after administration in purified water was significantly increased to 2.5 times the initial dosing concentration. Thus, osmolality-dependent changes in GI water absorption can cause significant changes of drug concentration in the GI fluid, potentially resulting in altered drug absorption characteristics. Indeed, the fraction absorbed of atenolol in jejunum was significantly greater when the drug was administered in purified water than in isosmotic solution. In contrast, no significant change in fraction absorbed of antipyrine was observed. Our results indicate that osmolality-dependent changes in GI water volume may influence drug absorption, especially of low-permeability drugs.


Subject(s)
Anti-Arrhythmia Agents/pharmacokinetics , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Antipyrine/pharmacokinetics , Atenolol/pharmacokinetics , Dextrans/pharmacokinetics , Fluorescein-5-isothiocyanate/analogs & derivatives , Intestinal Absorption , Water/metabolism , Administration, Oral , Animals , Fluorescein-5-isothiocyanate/pharmacokinetics , Intestinal Mucosa/metabolism , Male , Osmolar Concentration , Rats , Rats, Wistar
19.
J Pharm Sci ; 105(2): 729-733, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26458075

ABSTRACT

Nitric oxide (NO), an endogenous gas that plays a versatile role in the physiological system, has the ability to increase the intestinal absorption of water-soluble compounds through the paracellular route. However, it remains unclear whether NO can enhance the absorption of hydrophobic drugs through the transcellular route. In this study, we examined the absorption-enhancing effect of NO on intestinal permeability of hydrophobic drugs in rat intestine. The pretreatment of rat gastrointestinal sacs with NOC7, a NO-releasing reagent, significantly increased the permeation of griseofulvin from mucosa to serosa in the sacs prepared from the duodenum, but not in those prepared from the other regions such as jejunum, ileum, and colon. The absorption-enhancing effect of NOC7 on the duodenal permeation varied depending on the hydrophobicity of the drugs used. Furthermore, NOC7 treatment was found to be apparently ineffective on the griseofulvin permeation in the duodenum pretreated with dithiothreitol (DTT) that was used as a mucus remover, even though the permeation was increased by pretreatment with DTT alone. These results suggest that NO increases the absorption of hydrophobic drugs through the transcellular route in the duodenum by modulating the mucus layer function.


Subject(s)
Duodenum/drug effects , Hydrophobic and Hydrophilic Interactions/drug effects , Intestinal Absorption/drug effects , Nitric Oxide/administration & dosage , Nitric Oxide/metabolism , Animals , Drug Synergism , Duodenum/metabolism , Intestinal Absorption/physiology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Male , Rats , Rats, Wistar , Triazenes/administration & dosage , Triazenes/metabolism
20.
Eur J Drug Metab Pharmacokinet ; 39(3): 211-20, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24014129

ABSTRACT

Tight junction (TJ) is composed of the most apical components of the intercellular junctional complex in epithelial cells; TJ has cell polarity and functions as a major determinant of epithelial barrier function. In this study, to clarify the components of TJ required for its reconstruction and functional acquisition, we examined the changes in intestinal mucosal structure that depended on mucosal lesion by intestinal I/R, that is, the changes in mRNA and protein expression of the claudin family and scaffold proteins. We used an in vivo intestinal I/R model made using the spring scale and surgical sutures, and examined the mRNA and protein expression levels of TJ components by real-time RT-PCR and Western blotting, respectively. Changes in mRNA and protein expression levels of TJ components by intestinal I/R were observed. Among them, characteristic changes were observed in claudin-2 and claudin-4. In addition, the expression behavior of multi-PDZ domain protein (MPDP) mRNA was similar to that of claudin-4. In conclusion, in the recovery process of TJ from mucosal lesion by intestinal I/R, it was suggested that claudin-2 and claudin-4 strongly participate in the reconstruction and functional acquisition of TJ, respectively. Furthermore, it was suggested that MPDZ, which is scaffold protein, also has an important role in these processes.


Subject(s)
Ileum/metabolism , Intestinal Mucosa/metabolism , Reperfusion Injury/metabolism , Tight Junction Proteins/metabolism , Tight Junctions/metabolism , Animals , Blotting, Western , Carrier Proteins/genetics , Carrier Proteins/metabolism , Claudins/genetics , Claudins/metabolism , Disease Models, Animal , Gene Expression Regulation , Ileum/pathology , Intestinal Mucosa/blood supply , Intestinal Mucosa/pathology , Intracellular Signaling Peptides and Proteins , Male , Permeability , RNA, Messenger/metabolism , Rats, Wistar , Real-Time Polymerase Chain Reaction , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Reverse Transcriptase Polymerase Chain Reaction , Tight Junction Proteins/genetics , Tight Junctions/pathology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL