Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Am Chem Soc ; 146(12): 8746-8756, 2024 03 27.
Article in English | MEDLINE | ID: mdl-38486375

ABSTRACT

Tigliane diterpenoids possess exceptionally complex structures comprising common 5/7/6/3-membered ABCD-rings and disparate oxygen functionalities. While tiglianes display a wide range of biological activities, compounds with HIV latency-reversing activity can eliminate viral reservoirs, thereby serving as promising leads for new anti-HIV agents. Herein, we report collective total syntheses of phorbol (13) and 11 tiglianes 14-24 with various acylation patterns and oxidation states, and their evaluation as HIV latency-reversing agents. The syntheses were strategically divided into five stages to increase the structural complexity. First, our previously established sequence enabled the expeditious preparation of ABC-tricycle 9 in 15 steps. Second, hydroxylation of 9 and ring-contractive D-ring formation furnished phorbol (13). Third, site-selective attachment of two acyl groups to 13 produced four phorbol diesters 14-17. Fourth, the oxygen functionalities were regio- and stereoselectively installed to yield five tiglianes 18-22. Fifth, further oxidation to the most densely oxygenated acerifolin A (23) and tigilanol tiglate (24) was realized through organizing a 3D shape of the B-ring. Assessment of the HIV latency-reversing activities of the 12 tiglianes revealed seven tiglianes (14-17 and 22-24) with 20- to 300-fold improved efficacy compared with prostratin (12), a representative latency-reversing agent. Therefore, the robust synthetic routes to a variety of tiglianes with promising activities devised in this study provide opportunities for advancing HIV eradication strategies.


Subject(s)
Diterpenes , HIV Infections , Phorbols , Humans , Virus Latency , Oxygen
2.
Biol Pharm Bull ; 47(5): 905-911, 2024.
Article in English | MEDLINE | ID: mdl-38692867

ABSTRACT

Viruses require host cells to replicate and proliferate, which indicates that viruses hijack the cellular machinery. Human immunodeficiency virus type 1 (HIV-1) primarily infects CD4-positive T cells, and efficiently uses cellular proteins to replicate. Cells already have proteins that inhibit the replication of the foreign HIV-1, but their function is suppressed by viral proteins. Intriguingly, HIV-1 infection also changes the cellular metabolism to aerobic glycolysis. This phenomenon has been interpreted as a cellular response to maintain homeostasis during viral infection, yet HIV-1 efficiently replicates even in this environment. In this review, we discuss the regulatory role of glycolytic enzymes in viral replication and the impact of aerobic glycolysis on viral infection by introducing various host proteins involved in viral replication. Furthermore, we would like to propose a "glyceraldehyde-3-phosphate dehydrogenase-induced shock (G-shock) and kill strategy" that maximizes the antiviral effect of the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to eliminate latently HIV-1-infected cells.


Subject(s)
Glycolysis , HIV Infections , HIV-1 , Virus Replication , Humans , HIV-1/physiology , Glycolysis/physiology , HIV Infections/virology , HIV Infections/metabolism , HIV Infections/immunology , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism
3.
Molecules ; 29(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38930907

ABSTRACT

This study presents a quantum chemical investigation into the structural analysis and calculated Raman spectra of modeled amylose with varying units of linked glucose molecules. We systematically examined the rotation of hydroxymethyl groups and intramolecular hydrogen bonds within these amylose models. Our study found that as the number of linked glucose units increases, the linear structure becomes more complex, resulting in curled, cyclic, or helical structures facilitated by establishing various intramolecular interactions. The hydroxymethyl groups were confirmed to form interactions with oxygen atoms and with hydroxymethyl and hydroxyl groups from adjacent rings in the molecular structures. We identified distinct peaks and selected specific bands applicable in various analytical contexts by comparing their calculated Raman spectra. Representative vibrational modes within selected regions were identified across the different lengths of amylose models, serving as characteristic signatures for linear and more coiled structural conformations. Our findings contribute to a deeper understanding of amylose structures and spectroscopic signatures, with implications for theoretical studies and potential applications. This work provides valuable reference points for the detailed assignment of Raman peaks of amylose structure, facilitating their application in broader research on carbohydrate structures and their associated spectroscopic properties.


Subject(s)
Amylose , Glucose , Hydrogen Bonding , Spectrum Analysis, Raman , Amylose/chemistry , Glucose/chemistry , Quantum Theory , Models, Molecular , Molecular Structure
4.
Molecules ; 29(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38998956

ABSTRACT

A theoretical investigation utilizing density functional theory (DFT) calculations was conducted to explore the coordination complexes formed between histidine (His) ligands and various divalent transition metal ions (Mn2+, Fe2+, Co2+, Ni2+, Cu2+, and Zn2+). Conformational exploration of the His ligand was initially performed to assess its stability upon coordination. Both 1:1 and 1:2 of metal-to-ligand complexes were scrutinized to elucidate their structural features and the relative stability of the complexes. This study examined the ability of His to act as a bidentate or tridentate coordinating ligand, along with the differences in coordination geometry when solvent effects were incorporated. The reduced density gradient (RDG) analysis and local electron attachment energy (LEAE) analysis were employed to elucidate the interaction planes and the nucleophilic and electrophilic properties. The electronic properties were analyzed through electrostatic potential (ESP) maps and natural population analysis (NPA) of atomic charge distributions. This computational study provides valuable insights into the diverse coordination modes of His and its interactions with divalent transition metal ions, contributing to a better understanding of the role of this amino acid ligand in the formation of transition metal complexes. The findings can aid in the design and construction of self-assembled structures involving His-metal coordination.

SELECTION OF CITATIONS
SEARCH DETAIL