Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
J Am Chem Soc ; 146(21): 14715-14723, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38741481

ABSTRACT

In this work, the chemical reduction of a hybrid pyracylene-hexa-peri-hexabenzocoronene (HPH) nanographene was investigated with different alkali metals (Na, K, Rb) to reveal its remarkable multielectron acceptor abilities. The UV-vis and 1H NMR spectroscopy monitoring of the stepwise reduction reactions supports the existence of all intermediate reduction states up to the hexaanion for HPH. Tuning the experimental conditions enabled the synthesis of the HPH anions with gradually increasing reduction states (up to -5) isolated with different alkali metal ions as crystalline materials. The single-crystal X-ray diffraction structure analysis demonstrates that the highly negatively charged HPH anions (-4 and -5) exhibit a drastic geometry change from boat-shaped (observed in the neutral parent, mono- and dianions) to a chair conformation, which was proved to be fully reversible by NMR spectroscopy. DFT calculations show that this geometry change is induced by an enhanced interaction between the coordinated metal ions and negatively charged HPH core in the chair conformation.

2.
Chemistry ; 30(34): e202400696, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38563636

ABSTRACT

We disclose an indenoannulated tridecacyclene comprising a central cyclooctatetraene moiety with multiple adjacent pentagonal rings which is accessible in a concise synthetic sequence. The saddle-shaped geometry of the non-benzenoid polycyclic scaffold and its unique packing behavior in the solid state were characterized by X-ray crystallography. In electrochemical studies, the compound undergoes seven reversible redox events comprising five reductions and two oxidations. The dicationic and dianionic species obtained by chemical oxidation and reduction, respectively, were characterized spectroscopically in solution. Density functional theory calculations were applied to provide insights into aromaticity evolution in the respective charged species, highlighting the beneficial effect of the non-benzenoid moieties on charge stabilization.

3.
Chemistry ; 30(8): e202303336, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-37986242

ABSTRACT

A π-expanded X-type double [5]helicene comprising dihydropyracylene moieties was synthesized from commercially available acenaphthene. X-ray crystallographic analysis revealed the unique highly twisted structure of the compound resulting in the occurrence of two enantiomers which were separated by chiral HPLC, owing to their high conformational stability. The compound shows strongly bathochromically shifted UV/vis absorption and emission bands with small Stokes shift and considerable photoluminescence quantum yield and circular polarized luminescence response. The electrochemical studies revealed five facilitated reversible redox events, including three reductions and two oxidations, thus qualifying the compound as chiral multistage redox amphoter. The experimental findings are in line with the computational studies based on density functional theory pointing towards increased spatial extension of the frontier molecular orbitals over the polycyclic framework and a considerably narrowed HOMO-LUMO gap.

4.
Phys Chem Chem Phys ; 26(23): 16454-16458, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38819930

ABSTRACT

Bridged triarylamines, so-called N-heterotriangulenes (N-HTAs) are promising organic semiconductors for applications in optoelectronic devices. Thereby the electronic structure at organic/metal interfaces and within thin films as well as the electronically excited states dynamics after optical excitation is essential for the performance of organic-molecule-based devices. Here, we investigated the energy level alignment and the excited state dynamics of a N-HTA derivative adsorbed on Au(111) by means of energy- and time-resolved two-photon photoemission spectroscopy. We quantitatively determined the energetic positions of several occupied and unoccupied molecular (transport levels) and excitonic states (optical gap) in detail. A transport gap of 3.20 eV and an optical gap of 2.58 eV is determined, resulting in an exciton binding energy of 0.62 eV. With the first time-resolved investigation on a N-HTA compound we gained insights into the exciton dynamics and resolved processes on the femtosecond to picosecond timescale.

5.
Angew Chem Int Ed Engl ; 63(29): e202405570, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38716767

ABSTRACT

We report a synthetic approach to π-expanded [6]helicenes incorporating tropone and azocine units in combination with a 5-membered ring, which exhibit intriguing structural, electronic, and chiroptical properties. The regioselective Beckmann rearrangement allows the isolation of helical scaffolds containing 8-membered lactam, azocine, and amine units. As shown by X-ray crystallographic analysis, the incorporation of tropone or azocine units leads to highly distorted [6]helicene moieties, with distinct packing motifs in the solid state. The compounds exhibit promising optoelectronic properties with considerable photoluminescence quantum yields and tunable emission wavelengths depending on the relative position of the nitrogen center within the polycyclic framework. Separation of the enantiomers by chiral high-performance liquid chromatography (HPLC) allowed characterization of their chiroptical properties by circular dichroism (CD) and circularly polarized luminescence (CPL) spectroscopy. The azocine compounds feature manifold redox chemistry, allowing for the characterization of the corresponding radical anions and cations as well as the dications and dianions, with near-infrared (NIR) absorption bands extending beyond 3000 nm. Detailed theoretical studies provided insights into the aromaticity evolution upon reduction and oxidation, suggesting that the steric strain prevents the azocine unit from undergoing aromatization, while the indene moiety dominates the observed redox chemistry.

6.
Small ; 19(23): e2207426, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36908090

ABSTRACT

Understanding and controlling the nucleation and crystallization in solution-processed perovskite thin films are critical to achieving high in-plane charge carrier transport in field-effect transistors (FETs). This work demonstrates a simple and effective additive engineering strategy using pentanoic acid (PA). Here, PA is introduced to both modulate the crystallization process and improve the charge carrier transport in 2D 2-thiopheneethylammonium tin iodide ((TEA)2 SnI4 ) perovskite FETs. It is revealed that the carboxylic group of PA is strongly coordinated to the spacer cation TEAI and [SnI6 ]4- framework in the perovskite precursor solution, inducing heterogeneous nucleation and lowering undesired oxidation of Sn2+ during the film formation. These factors contribute to a reduced defect density and improved film morphology, including lower surface roughness and larger grain size, resulting in overall enhanced transistor performance. The reduced defect density and decreased ion migration lead to a higher p-channel charge carrier mobility of 0.7 cm2 V-1 s-1 , which is more than a threefold increase compared with the control device. Temperature-dependent charge transport studies demonstrate a mobility of 2.3 cm2 V-1 s-1 at 100 K due to the diminished ion mobility at low temperatures. This result illustrates that the additive strategy bears great potential to realize high-performance Sn-based perovskite FETs.

7.
Chemistry ; 29(6): e202203101, 2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36287191

ABSTRACT

A novel, benign synthetic strategy towards soluble tetra(peri-naphthylene)anthracene (TPNA) decorated with triisopropylsilylethynyl substituents has been established. The compound is perfectly stable under ambient conditions in air and features intense and strongly bathochromically shifted UV/vis absorption and emission bands reaching to near-IR region beyond 900 nm. Cyclic voltammetry measurements revealed four facilitated reversible redox events comprising two oxidations and two reductions. These remarkable experimental findings were corroborated by theoretical studies to identify the TPNA platform a particularly useful candidate for the development of functional near-IR fluorophores upon appropriate functionalization.

8.
Phys Chem Chem Phys ; 25(22): 15382-15390, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37232036

ABSTRACT

The attachment of silver(I) cations to 5,7,12,14-tetraphenyl-6,13-diazapentacene and its reduced dihydro-form has been studied by electrospray ionization mass spectrometry (ESI-MS). The structure elucidation of the Ag+ complexes has been accomplished in gas-phase collision experiments in conjunction with density functional theory (DFT) calculations. The oxidized form provides a favourable cavity for the Ag+ ion, leading to the [1 : 1] complex with the highest resilience towards dissociation and severely hindering the attainment of a second molecular ligand. When the nitrogen is hydrogenated in the reduced dihydro-form, the cavity is partly blocked. This leads to a less strongly bound [1 : 1] complex ion but facilitates the attachment of a second molecular ligand to the Ag+. The resulting complex is the most stable among the [2 : 1] complexes. DFT calculations provide valuable insight into the geometries of the complex ions. Adding silver(I) to the reduced dihydro-form for cationization also induces its oxidation in solution. The oxidative dehydrogenation reaction, for which a mechanism is proposed, proceeds by first order kinetics and is markedly accelerated by day light.

9.
Angew Chem Int Ed Engl ; 62(46): e202312740, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37739928

ABSTRACT

We disclose π-expanded pyracylenes and their cationic species comprising 7-membered rings. The compounds were synthesized by stepwise oxidative cyclodehydrogenation to monitor the effect of successive cyclization on the structural and optoelectronic properties. As shown by X-ray crystallography, the complete cyclization leads to a boat-shaped scaffold featuring negative curvature provided by the 7-membered ring. The embedded tropone unit enabled the convenient generation of a stabilized tropylium cation, showing bathochromically shifted absorption bands reaching into the near-infrared region beyond 1000 nm. The altered structural features, supported by theoretical calculations, point towards the positively charged 7-membered ring having aromatic character.

10.
Chemistry ; 28(47): e202201554, 2022 Aug 22.
Article in English | MEDLINE | ID: mdl-35652474

ABSTRACT

We disclose a successive π-expansion of pyracylene towards boat-shaped polycyclic scaffolds. The unique structural features of the resulting compounds were revealed by X-ray crystallographic analysis. Depending on the extent of π-expansion the compounds display intense bathochromically shifted absorption bands in their UV/Vis spectra and are prone to several redox events as documented by cyclic voltammetry. The experimental observations are in line with the computational studies based on density functional theory, suggesting progressive narrowing of the HOMO-LUMO gap and distinct evolution of the electronic structure and aromaticity.

11.
Chemistry ; 28(67): e202201424, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35996843

ABSTRACT

A novel doubly cyclopentannulated carbazole which is accessible through a successive π-expansion of di(1-naphthylamine) is disclosed. The carbazole moiety is generated in the final step through intramolecular oxidative coupling. The π-expansion of carbazole resulted in strongly altered optoelectronic and electrochemical properties. The solid-state structure features an interesting packing motif with alternating face-to-face π⋅⋅⋅π and edge-to-face C-H⋅⋅⋅π interactions. The experimental findings were corroborated by theoretical calculations.

12.
Chemistry ; 28(34): e202200326, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35293646

ABSTRACT

A family of fully bridged triphenylamines with embedded 5- and 7-membered rings is presented. The compounds are potent electron donors capable to undergo donor/acceptor interactions with strong cyano-based acceptors both in the solid state and solution. These interactions were evaluated by IR and UV/vis spectroscopy as well as X-ray crystallography. The vinylene-bridged compound was oxidized to the corresponding 1,2-diketone which readily underwent acid-catalyzed condensation with selected 1,2-phenylenediamines. The resulting π-extended quinoxaline derivatives represent valuable building blocks for the development of functional chromophores upon appropriate functionalization.

13.
Angew Chem Int Ed Engl ; 61(39): e202205287, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-35900162

ABSTRACT

We describe a new type of nitrogen-centered polycyclic scaffold comprising a unique combination of 5-, 6-, and 7-membered rings. The compound is accessible through an intramolecular oxidative cyclodehydrogenation of tri(1-naphthyl)amine. To the best of our knowledge this is the very first example of a direct 3-fold cyclization of a triarylamine under oxidative conditions. The unusual ring fusion motif is confirmed by X-ray crystallography and the impact of cyclization on the electronic and photophysical properties is investigated both experimentally and theoretically based on density-functional theory (DFT) calculations. The formation of the unexpected product is rationalized by detailed mechanistic studies on the DFT level. The results suggest the cyclization to occur under kinetic control via a dicationic mechanism.

14.
Chemistry ; 27(53): 13352-13357, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34374138

ABSTRACT

Chirality, a characteristic tool of molecular recognition in nature, is often a complement of redox active systems. Scientists, in their eagerness to mimic such sophistication, have designed numerous chiral systems based on molecular entities with cavities, such as macrocycles and cages. In an attempt to combine chirality and redox-active species, in this contribution we report the synthesis and detailed characterization of a chiral shape-persistent molecular cage based on the combination of enantiopure diethynylallenes and electron-rich bridged triarylamines, also known as N-heterotriangulenes. Its ability for chiral recognition in solution was revealed through UV/vis titrations with enantiopure helicenes.


Subject(s)
Stereoisomerism , Molecular Structure
15.
Chemphyschem ; 22(11): 1079-1087, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-33792107

ABSTRACT

The ability of a series of bridged triarylamines, so-called N-heterotriangulenes, to form multilayer-type 2D-extended films via a solution-based processing method was examined using complementary microscopic techniques. We found that the long-range order, crystallinity, and layer thickness decisively depend on the nature of the substituents attached to the polycyclic backbone. Owing to their flat core unit, compounds exhibiting a carbonyl unit at the bridge position provide a superior building block as compared to thioketone-bridged derivatives. In addition, nature and length of the peripheral substituents affect the orientation of the aromatic core unit within highly crystalline films. Hence, our results stress the significance of a suitable molecular framework and provide deeper understanding of structure formation in 2D-confined surroundings for such compounds.

16.
Nature ; 523(7559): 196-9, 2015 Jul 09.
Article in English | MEDLINE | ID: mdl-26156373

ABSTRACT

Efficient transport of excitation energy over long distances is a key process in light-harvesting systems, as well as in molecular electronics. However, in synthetic disordered organic materials, the exciton diffusion length is typically only around 10 nanometres (refs 4, 5), or about 50 nanometres in exceptional cases, a distance that is largely determined by the probability laws of incoherent exciton hopping. Only for highly ordered organic systems has the transport of excitation energy over macroscopic distances been reported--for example, for triplet excitons in anthracene single crystals at room temperature, as well as along single polydiacetylene chains embedded in their monomer crystalline matrix at cryogenic temperatures (at 10 kelvin, or -263 degrees Celsius). For supramolecular nanostructures, uniaxial long-range transport has not been demonstrated at room temperature. Here we show that individual self-assembled nanofibres with molecular-scale diameter efficiently transport singlet excitons at ambient conditions over more than four micrometres, a distance that is limited only by the fibre length. Our data suggest that this remarkable long-range transport is predominantly coherent. Such coherent long-range transport is achieved by one-dimensional self-assembly of supramolecular building blocks, based on carbonyl-bridged triarylamines, into well defined H-type aggregates (in which individual monomers are aligned cofacially) with substantial electronic interactions. These findings may facilitate the development of organic nanophotonic devices and quantum information technology.

17.
Angew Chem Int Ed Engl ; 60(12): 6771-6777, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33306267

ABSTRACT

Three linear dimers with two redox-active planarized triphenylamines were synthesized and their structures verified by X-ray crystallography. Their radical cations, which exhibit electron self-exchange between the two redox centers, are of great interest. This process was thoroughly investigated by means of electron paramagnetic resonance spectroscopy, absorption spectroscopy, and (time-dependent) density functional theory calculations. A comparison of the key parameters of electron transfer with non-planarized nitrogen-centered building blocks emphasizes the impact of using redox centers with low internal reorganization energies. However, the distance-dependence attenuation factor of the super-exchange mechanisms remains similar.

18.
Angew Chem Int Ed Engl ; 60(7): 3510-3514, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33108043

ABSTRACT

The chemical reduction of a π-expanded polycyclic framework comprising a cyclooctatetraene moiety, octaphenyltetrabenzocyclooctatetraene, with lithium metal readily affords the corresponding tetra-anion instead of the expected aromatic dianion. As revealed by X-ray crystallography, the highly contorted tetra-anion is stabilized by coordination of two internally bound Li+ , while two external cations remain solvent separated. The variable-temperature 7 Li NMR spectra in THF confirm the presence of three types of Li+ ions and clearly differentiate internal binding, consistent with the crystal structure. Density-functional theory calculations suggest that the formation of the highly charged tetra-reduced carbanion is stabilized through Li+ coordination under the applied experimental conditions.

19.
Chemistry ; 26(16): 3474-3478, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-31797440

ABSTRACT

The synthesis and extensive experimental (X-ray crystallography, UV/Vis spectroscopy, cyclic voltammetry) and theoretical (DFT calculations) characterization of two isomeric dithieno[b,f]phosphepines (DTPs) are presented herein. The relative orientation of the phosphepine and the thiophene moieties has a decisive impact on the electronic and structural properties of these compounds. Moreover, the thiophene units allow for a facile subsequent functionalization through direct Pd-catalyzed C-H coupling, which renders DTPs highly promising building blocks for organophosphorus functional materials.

20.
Chemistry ; 26(15): 3264-3269, 2020 Mar 12.
Article in English | MEDLINE | ID: mdl-31970834

ABSTRACT

This work reports the design and synthesis of a sterically protected triphenylamine scaffold which undergoes one-electron oxidation to form an amine-centered radical cation of remarkable stability. Several structural adjustments were made to tame the inherent reactivity of the radical cation. First, the parent propeller-shaped triphenylamine was planarized with sterically demanding bridging units and, second, protecting groups were deployed to block the reactive positions. The efficiently shielded triphenylamine core can be reversibly oxidized at moderate potentials (+0.38 V, vs. Fc/Fc+ in CH2 Cl2 ). Spectroelectrochemistry and chemical oxidation studies were employed to monitor the evolution of characteristic photophysical features. To obtain a better understanding of the impact of one-electron oxidation on structural and electronic properties, joint experimental and computational studies were conducted, including X-ray structural analysis, electron paramagnetic resonance (EPR), and density functional theory (DFT) calculations. The sterically shielded radical cation combines various desirable attributes: A characteristic and unobstructed absorption in the visible region, high stability which enables storage for weeks without spectroscopically traceable degradation, and a reliable oxidation/re-reduction process due to effective screening of the planarized triphenylamine core from its environment.

SELECTION OF CITATIONS
SEARCH DETAIL