Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 510
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 29: 399-413, 2011.
Article in English | MEDLINE | ID: mdl-21219176

ABSTRACT

The discovery of genetic defects causing congenital neutropenia has illuminated mechanisms controlling differentiation, circulation, and decay of neutrophil granulocytes. Deficiency of the mitochondrial proteins HAX1 and AK2 cause premature apoptosis of myeloid progenitor cells associated with dissipation of the mitochondrial membrane potential, whereas mutations in ELA2/ELANE and G6PC3 are associated with signs of increased endoplasmic reticulum stress. Mutations in the transcriptional repressor GFI1 and the cytoskeletal regulator WASP also lead to defective neutrophil production. This unexpected diversity of factors suggests that multiple pathways are involved in the pathogenesis of congenital neutropenia.


Subject(s)
Neutrophils/cytology , Congenital Bone Marrow Failure Syndromes , Endoplasmic Reticulum , Humans , Mutation , Neutropenia/congenital , Neutropenia/genetics , Neutropenia/pathology , Neutrophils/metabolism
2.
Nat Methods ; 21(5): 868-881, 2024 May.
Article in English | MEDLINE | ID: mdl-38374263

ABSTRACT

The human bone marrow (BM) niche sustains hematopoiesis throughout life. We present a method for generating complex BM-like organoids (BMOs) from human induced pluripotent stem cells (iPSCs). BMOs consist of key cell types that self-organize into spatially defined three-dimensional structures mimicking cellular, structural and molecular characteristics of the hematopoietic microenvironment. Functional properties of BMOs include the presence of an in vivo-like vascular network, the presence of multipotent mesenchymal stem/progenitor cells, the support of neutrophil differentiation and responsiveness to inflammatory stimuli. Single-cell RNA sequencing revealed a heterocellular composition including the presence of a hematopoietic stem/progenitor (HSPC) cluster expressing genes of fetal HSCs. BMO-derived HSPCs also exhibited lymphoid potential and a subset demonstrated transient engraftment potential upon xenotransplantation in mice. We show that the BMOs could enable the modeling of hematopoietic developmental aspects and inborn errors of hematopoiesis, as shown for human VPS45 deficiency. Thus, iPSC-derived BMOs serve as a physiologically relevant in vitro model of the human BM microenvironment to study hematopoietic development and BM diseases.


Subject(s)
Cell Differentiation , Hematopoiesis , Induced Pluripotent Stem Cells , Organoids , Humans , Organoids/cytology , Organoids/metabolism , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Animals , Mice , Hematopoietic Stem Cells/cytology , Bone Marrow/metabolism , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Culture Techniques/methods , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism
3.
Am J Hum Genet ; 110(8): 1330-1342, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37494930

ABSTRACT

Allelic series are of candidate therapeutic interest because of the existence of a dose-response relationship between the functionality of a gene and the degree or severity of a phenotype. We define an allelic series as a collection of variants in which increasingly deleterious mutations lead to increasingly large phenotypic effects, and we have developed a gene-based rare-variant association test specifically targeted to identifying genes containing allelic series. Building on the well-known burden test and sequence kernel association test (SKAT), we specify a variety of association models covering different genetic architectures and integrate these into a Coding-Variant Allelic-Series Test (COAST). Through extensive simulations, we confirm that COAST maintains the type I error and improves the power when the pattern of coding-variant effect sizes increases monotonically with mutational severity. We applied COAST to identify allelic-series genes for four circulating-lipid traits and five cell-count traits among 145,735 subjects with available whole-exome sequencing data from the UK Biobank. Compared with optimal SKAT (SKAT-O), COAST identified 29% more Bonferroni-significant associations with circulating-lipid traits, on average, and 82% more with cell-count traits. All of the gene-trait associations identified by COAST have corroborating evidence either from rare-variant associations in the full cohort (Genebass, n = 400,000) or from common-variant associations in the GWAS Catalog. In addition to detecting many gene-trait associations present in Genebass by using only a fraction (36.9%) of the sample, COAST detects associations, such as that between ANGPTL4 and triglycerides, that are absent from Genebass but that have clear common-variant support.


Subject(s)
Genetic Variation , Lipids , Computer Simulation , Genetic Association Studies , Phenotype , Genome-Wide Association Study
4.
Blood ; 144(3): 308-322, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38657197

ABSTRACT

ABSTRACT: Thrombotic microangiopathy (TMA) is characterized by immunothrombosis and life-threatening organ failure but the precise underlying mechanism driving its pathogenesis remains elusive. In this study, we hypothesized that gasdermin D (GSDMD), a pore-forming protein that serves as the final downstream effector of the pyroptosis/interleukin-1ß (IL-1ß) pathway, contributes to TMA and its consequences by amplifying neutrophil maturation and subsequent necrosis. Using a murine model of focal crystalline TMA, we found that Gsdmd deficiency ameliorated immunothrombosis, acute tissue injury, and failure. Gsdmd-/- mice exhibited a decrease in mature IL-1ß, as well as in neutrophil maturation, ß2-integrin activation, and recruitment to TMA lesions, in which they formed reduced neutrophil extracellular traps in both arteries and interstitial tissue. The GSDMD inhibitor disulfiram dose-dependently suppressed human neutrophil pyroptosis in response to cholesterol crystals. Experiments with GSDMD-deficient, human-induced, pluripotent stem cell-derived neutrophils confirmed the involvement of GSDMD in neutrophil ß2-integrin activation, maturation, and pyroptosis. Both prophylactic and therapeutic administration of disulfiram protected the mice from focal TMA, acute tissue injury, and failure. Our data identified GSDMD as a key mediator of focal crystalline TMA and its consequences, including ischemic tissue infarction and organ failure. GSDMD could potentially serve as a therapeutic target for the systemic forms of TMA.


Subject(s)
Gasdermins , Neutrophils , Phosphate-Binding Proteins , Thrombotic Microangiopathies , Animals , Humans , Mice , CD18 Antigens/metabolism , CD18 Antigens/genetics , Disease Models, Animal , Extracellular Traps/metabolism , Extracellular Traps/immunology , Inflammation/pathology , Inflammation/metabolism , Interleukin-1beta/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/pathology , Phosphate-Binding Proteins/metabolism , Phosphate-Binding Proteins/genetics , Pyroptosis , Thrombotic Microangiopathies/pathology , Thrombotic Microangiopathies/metabolism , Thrombotic Microangiopathies/immunology , Thrombotic Microangiopathies/etiology
5.
Blood ; 143(15): 1476-1487, 2024 04 11.
Article in English | MEDLINE | ID: mdl-38194689

ABSTRACT

ABSTRACT: Mutations in the small Rho-family guanosine triphosphate hydrolase RAC2, critical for actin cytoskeleton remodeling and intracellular signal transduction, are associated with neonatal severe combined immunodeficiency (SCID), infantile neutrophilic disorder resembling leukocyte adhesion deficiency (LAD), and later-onset combined immune deficiency (CID). We investigated 54 patients (23 previously reported) from 37 families yielding 15 novel RAC2 missense mutations, including one present only in homozygosity. Data were collected from referring physicians and literature reports with updated clinical information. Patients were grouped by presentation: neonatal SCID (n = 5), infantile LAD-like disease (n = 5), or CID (n = 44). Disease correlated to RAC2 activity: constitutively active RAS-like mutations caused neonatal SCID, dominant-negative mutations caused LAD-like disease, whereas dominant-activating mutations caused CID. Significant T- and B-lymphopenia with low immunoglobulins were seen in most patients; myeloid abnormalities included neutropenia, altered oxidative burst, impaired neutrophil migration, and visible neutrophil macropinosomes. Among 42 patients with CID with clinical data, upper and lower respiratory infections and viral infections were common. Twenty-three distinct RAC2 mutations, including 15 novel variants, were identified. Using heterologous expression systems, we assessed downstream effector functions including superoxide production, p21-activated kinase 1 binding, AKT activation, and protein stability. Confocal microscopy showed altered actin assembly evidenced by membrane ruffling and macropinosomes. Altered protein localization and aggregation were observed. All tested RAC2 mutant proteins exhibited aberrant function; no single assay was sufficient to determine functional consequence. Most mutants produced elevated superoxide; mutations unable to support superoxide formation were associated with bacterial infections. RAC2 mutations cause a spectrum of immune dysfunction, ranging from early onset SCID to later-onset combined immunodeficiencies depending on RAC2 activity. This trial was registered at www.clinicaltrials.gov as #NCT00001355 and #NCT00001467.


Subject(s)
Immunologic Deficiency Syndromes , Leukocyte-Adhesion Deficiency Syndrome , Primary Immunodeficiency Diseases , Severe Combined Immunodeficiency , Humans , Infant, Newborn , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/metabolism , Neutrophils/metabolism , Primary Immunodeficiency Diseases/genetics , Primary Immunodeficiency Diseases/metabolism , rac GTP-Binding Proteins/genetics , rac GTP-Binding Proteins/metabolism , rac1 GTP-Binding Protein/metabolism , RAC2 GTP-Binding Protein , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/metabolism , Superoxides/metabolism
6.
Blood ; 143(24): 2504-2516, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38579284

ABSTRACT

ABSTRACT: Wiskott-Aldrich syndrome (WAS) is a multifaceted monogenic disorder with a broad disease spectrum and variable disease severity and a variety of treatment options including allogeneic hematopoietic stem cell transplantation (HSCT) and gene therapy (GT). No reliable biomarker exists to predict disease course and outcome for individual patients. A total of 577 patients with a WAS variant from 26 countries and a median follow-up of 8.9 years (range, 0.3-71.1), totaling 6118 patient-years, were included in this international retrospective study. Overall survival (OS) of the cohort (censored at HSCT or GT) was 82% (95% confidence interval, 78-87) at age 15 years and 70% (61-80) at 30 years. The type of variant was predictive of outcome: patients with a missense variant in exons 1 or 2 or with the intronic hot spot variant c.559+5G>A (class I variants) had a 15-year OS of 93% (89-98) and a 30-year OS of 91% (86-97), compared with 71% (62-81) and 48% (34-68) in patients with any other variant (class II; P < .0001). The cumulative incidence rates of disease-related complications such as severe bleeding (P = .007), life-threatening infection (P < .0001), and autoimmunity (P = .004) occurred significantly later in patients with a class I variant. The cumulative incidence of malignancy (P = .6) was not different between classes I and II. It confirms the spectrum of disease severity and quantifies the risk for specific disease-related complications. The class of the variant is a biomarker to predict the outcome for patients with WAS.


Subject(s)
Genotype , Wiskott-Aldrich Syndrome , Humans , Adolescent , Child , Male , Wiskott-Aldrich Syndrome/genetics , Wiskott-Aldrich Syndrome/diagnosis , Wiskott-Aldrich Syndrome/therapy , Female , Child, Preschool , Adult , Retrospective Studies , Infant , Young Adult , Biomarkers , Hematopoietic Stem Cell Transplantation , Severity of Illness Index , Wiskott-Aldrich Syndrome Protein/genetics , Follow-Up Studies , Middle Aged , Prognosis , Survival Rate
7.
Blood ; 141(6): 645-658, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36223592

ABSTRACT

The mechanisms of coordinated changes in proteome composition and their relevance for the differentiation of neutrophil granulocytes are not well studied. Here, we discover 2 novel human genetic defects in signal recognition particle receptor alpha (SRPRA) and SRP19, constituents of the mammalian cotranslational targeting machinery, and characterize their roles in neutrophil granulocyte differentiation. We systematically study the proteome of neutrophil granulocytes from patients with variants in the SRP genes, HAX1, and ELANE, and identify global as well as specific proteome aberrations. Using in vitro differentiation of human induced pluripotent stem cells and in vivo zebrafish models, we study the effects of SRP deficiency on neutrophil granulocyte development. In a heterologous cell-based inducible protein expression system, we validate the effects conferred by SRP dysfunction for selected proteins that we identified in our proteome screen. Thus, SRP-dependent protein processing, intracellular trafficking, and homeostasis are critically important for the differentiation of neutrophil granulocytes.


Subject(s)
Induced Pluripotent Stem Cells , Proteome , Animals , Humans , Zebrafish , Human Genetics , Mammals , Adaptor Proteins, Signal Transducing
8.
Immunogenetics ; 76(3): 189-202, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38683392

ABSTRACT

Hypogammaglobulinemia without B-cells is a subgroup of inborn errors of immunity (IEI) which is characterized by a significant decline in all serum immunoglobulin isotypes, coupled with a pronounced reduction or absence of B-cells. Approximately 80 to 90% of individuals exhibit genetic variations in Bruton's agammaglobulinemia tyrosine kinase (BTK), whereas a minority of cases, around 5-10%, are autosomal recessive agammaglobulinemia (ARA). Very few cases are grouped into distinct subcategories. We evaluated phenotypically and genetically 27 patients from 13 distinct families with hypogammaglobinemia and no B-cells. Genetic analysis was performed via whole-exome and Sanger sequencing. The most prevalent genetic cause was mutations in BTK. Three novel mutations in the BTK gene include c.115 T > C (p. Tyr39His), c.685-686insTTAC (p.Asn229llefs5), and c.163delT (p.Ser55GlnfsTer2). Our three ARA patients include a novel homozygous stop-gain mutation in the immunoglobulin heavy constant Mu chain (IGHM) gene, a novel frameshift mutation of the B-cell antigen receptor complex-associated protein (CD79A) gene, a novel bi-allelic stop-gain mutation in the transcription factor 3 (TCF3) gene. Three patients with agammaglobulinemia have an autosomal dominant inheritance pattern, which includes a missense variant in PIK3CD, a novel missense variant in PIK3R1 and a homozygous silent mutation in the phosphoinositide-3-kinase regulatory subunit (RASGRP1) gene. This study broadens the genetic spectrum of hypogammaglobulinemia without B-cells and presented a few novel variants within the Iranian community, which may also have implications in other Middle Eastern populations. Notably, disease control was better in the second affected family member in families with multiple cases.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , Agammaglobulinemia , B-Lymphocytes , Mutation , Registries , Humans , Agammaglobulinemia/genetics , Agammaglobulinemia/immunology , Male , B-Lymphocytes/immunology , Female , Agammaglobulinaemia Tyrosine Kinase/genetics , Child , Child, Preschool , Adolescent , Infant , Pedigree , Class Ia Phosphatidylinositol 3-Kinase
9.
Blood ; 139(13): 2066-2079, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35100336

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative treatment for patients affected by Wiskott-Aldrich syndrome (WAS). Reported HSCT outcomes have improved over time with respect to overall survival, but some studies have identified older age and HSCT from alternative donors as risk factors predicting poorer outcome. We analyzed 197 patients undergoing transplant at European Society for Blood and Marrow Transplantation centers between 2006 and 2017 who received conditioning as recommended by the Inborn Errors Working Party (IEWP): either busulfan (n = 103) or treosulfan (n = 94) combined with fludarabine ± thiotepa. After a median follow-up post-HSCT of 44.9 months, 176 patients were alive, resulting in a 3-year overall survival of 88.7% and chronic graft-versus-host disease (GVHD)-free survival (events include death, graft failure, and severe chronic GVHD) of 81.7%. Overall survival and chronic GVHD-free survival were not significantly affected by conditioning regimen (busulfan- vs treosulfan-based), donor type (matched sibling donor/matched family donor vs matched unrelated donor/mismatched unrelated donor vs mismatched family donor), or period of HSCT (2006-2013 vs 2014-2017). Patients aged <5 years at HSCT had a significantly better overall survival. The overall cumulative incidences of grade III to IV acute GVHD and extensive/moderate/severe chronic GVHD were 6.6% and 2.1%, respectively. Patients receiving treosulfan-based conditioning had a higher incidence of graft failure and mixed donor chimerism and more frequently underwent secondary procedures (second HSCT, unconditioned stem cell boost, donor lymphocyte infusion, or splenectomy). In summary, HSCT for WAS with conditioning regimens currently recommended by IEWP results in excellent survival and low rates of GVHD, regardless of donor or stem cell source, but age ≥5 years remains a risk factor for overall survival.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Wiskott-Aldrich Syndrome , Busulfan/therapeutic use , Child, Preschool , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Retrospective Studies , Tissue Donors , Transplantation Conditioning/methods , Treatment Outcome , Wiskott-Aldrich Syndrome/therapy
11.
J Allergy Clin Immunol ; 151(3): 791-796.e7, 2023 03.
Article in English | MEDLINE | ID: mdl-36462957

ABSTRACT

BACKGROUND: Toll-like receptors (TLRs) are important pattern recognition receptors that sense microbes and control host defense. Myeloid differentiation protein 2 (MD2) is the indispensable coreceptor for TLR4, facilitating the binding to the gram-negative bacterial cell wall component LPS and activation of downstream signaling. OBJECTIVE: We sought to provide phenotypic and mechanistic insights into human MD2 deficiency. METHODS: To elucidate the genetic cause in a patient with very early onset inflammatory bowel disease, we performed whole-exome sequencing and studied the functional consequences of the identified mutation in LY96 (encoding for MD2) in genetically engineered induced pluripotent stem cell-derived macrophages with knockout of MD2 or knockin of the patient-specific mutation, including TLR4-mediated signaling, cytokine production, and bacterial handling. RESULTS: Whole-exome sequencing identified a homozygous in-frame deletion in the LY96 gene (c.347_349delCAA; p.Thr116del) in a patient with very early onset inflammatory bowel disease and a sibling presenting with pneumonia and otitis media. Induced pluripotent stem cell-derived macrophages with knockout of MD2 or expression of the Thr116del mutation showed impaired activation of nuclear factor kappa B and mitogen-activated protein kinase signaling as well as TLR4 endocytosis on challenge with LPS or bacteria. In addition, MD2-deficient macrophages showed decreased cytokine expression (eg, IL-6, TNF, and IL-10) in response to LPS or gram-negative but not gram-positive bacteria. CONCLUSIONS: Human MD2 deficiency causes defective TLR4 signaling in response to LPS or gram-negative bacteria. The clinical manifestations and expressivity might be variable due to unknown secondary risk factors. Because TLR4 represents a therapeutic target for multiple inflammatory conditions, our study may provide insights into potential side effects of pharmacological TLR4 targeting.


Subject(s)
Lipopolysaccharides , Toll-Like Receptor 4 , Humans , Cytokines/metabolism , Lipopolysaccharides/pharmacology , Lymphocyte Antigen 96/metabolism , Signal Transduction , Toll-Like Receptor 4/genetics , Toll-Like Receptors/metabolism
12.
J Allergy Clin Immunol ; 151(3): 783-790.e5, 2023 03.
Article in English | MEDLINE | ID: mdl-36462956

ABSTRACT

BACKGROUND: Toll-like receptors (TLRs) mediate functions for host defense and inflammatory responses. TLR4 recognizes LPS, a component of gram-negative bacteria as well as host-derived endogenous ligands such as S100A8 and S100A9 proteins. OBJECTIVE: We sought to report phenotype and cellular function of individuals with complete TLR4 deficiency. METHODS: We performed genome sequencing and investigated exome and genome sequencing databases. Cellular responses were studied on primary monocytes, macrophages, and neutrophils, as well as cell lines using flow cytometry, reporter, and cytokine assays. RESULTS: We identified 2 individuals in a family of Qatari origin carrying a homozygous stop codon variant p.Q188X in TLR4 presenting with a variable phenotype (asymptomatic and inflammatory bowel disease consistent with severe perianal Crohn disease). A third individual with homozygous p.Y794X was identified in a population database. In contrast to hypomorphic polymorphisms p.D299G and p.T399I, the variants p.Q188X and p.Y794X completely abrogated LPS-induced cytokine responses whereas TLR2 response was normal. TLR4 deficiency causes a neutrophil CD62L shedding defect, whereas antimicrobial activity toward intracellular Salmonella was intact. CONCLUSIONS: Biallelic TLR4 deficiency in humans causes an inborn error of immunity in responding to LPS. This complements the spectrum of known primary immunodeficiencies, in particular myeloid differentiation primary response 88 (MYD88) or the IL-1 receptor-associated kinase 4 (IRAK4) deficiency that are downstream of TLR4 and TLR2 signaling.


Subject(s)
Toll-Like Receptor 2 , Toll-Like Receptor 4 , Humans , Toll-Like Receptor 4/genetics , Toll-Like Receptor 2/genetics , Lipopolysaccharides/pharmacology , Toll-Like Receptors/metabolism , Cytokines/metabolism , Myeloid Differentiation Factor 88/genetics
13.
Gesundheitswesen ; 2024 Apr 23.
Article in German | MEDLINE | ID: mdl-38653470

ABSTRACT

Based on the UN Convention on the Rights of the Child, children and young people have the right to participate in all matters and decisions that affect them. This applies in particular when they are patients in a children's hospital. In the international context, established formats for the participation of young patients regarding health issues already exist, for example "Children's Councils" or "Young Person's Advisory Groups". In Germany, such approaches are still mostly lacking. It thus remains important to develop suitable formats that enable meaningful and effective participation of young patients in the health system. These formats must be chosen in such a way that they can realistically be implemented in clinical settings as well as in pediatric research, and that they can be sustained in the long term. In order to strengthen the consideration of children's rights in the health system, the advancement of such participatory formats as well as their sustainable implementation and evaluation are desirable.

14.
Int J Cancer ; 153(10): 1854-1867, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37555668

ABSTRACT

The cellular basis of the apparent aggressiveness in lung cancer is poorly understood but likely associated with functional or molecular features of disseminated cancer cells (DCCs). DCCs from epithelial cancers are mostly detected by antibodies directed against histogenetic markers such as cytokeratin or EpCAM. It has been argued that marker-negative metastatic founder cells might escape detection. We therefore used ex vivo sphere formation for functional detection of candidate metastasis founders. We generated cell suspensions from 199 LN samples of 131 lung cancer patients and placed them into non-adherent cell culture. Sphere formation was associated with detection of DCCs using EpCAM immunocytology and with significantly poorer prognosis. The prognostic impact of sphere formation was strongly associated with high numbers of EpCAM-positive DCCs and aberrant genotypes of expanded spheres. We also noted sphere formation in patients with no evidence of lymphatic spread, however such spheres showed infrequent expression of signature genes associated with spheres from EpCAM-positive samples and displayed neither typical lung cancer mutations (KRAS, TP53, ERBB1) nor copy number variations, but might be linked to disease progression >5 years post curative surgery. We conclude that EpCAM identifies relevant disease-driving DCCs, that such cells can be expanded for model generation and that further research is needed to clarify the functional and prognostic role of rare EpCAM-negative sphere forming cells.


Subject(s)
Cell Adhesion Molecules , Lung Neoplasms , Humans , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cell Adhesion Molecule/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , DNA Copy Number Variations , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lymph Nodes/pathology
15.
Clin Immunol ; 256: 109777, 2023 11.
Article in English | MEDLINE | ID: mdl-37741518

ABSTRACT

C-terminal variants in CDC42 encoding cell division control protein 42 homolog underlie neonatal-onset cytopenia, autoinflammation, rash, and hemophagocytic lymphohistiocytosis (NOCARH). Pyrin inflammasome hyperactivation has been shown to contribute to disease pathophysiology. However, mortality of NOCARH patients remains high despite inflammasome-focused treatments. Here, we demonstrate in four NOCARH patients from three families that cell-intrinsic activation of type I interferon (IFN) is a previously unrecognized driver of autoinflammation in NOCARH. Our data show that aberrant innate immune activation is caused by sensing of cytosolic nucleic acids released from mitochondria, which exhibit disturbances in integrity and dynamics due to CDC42 dysfunction. In one of our patients, treatment with the Janus kinase inhibitor ruxolitinib led to complete remission, indicating that inhibition of type I IFN signaling may have an important role in the management of autoinflammation in patients with NOCARH.


Subject(s)
Interferon Type I , Lymphohistiocytosis, Hemophagocytic , Humans , Infant, Newborn , cdc42 GTP-Binding Protein , Inflammasomes/genetics , Lymphohistiocytosis, Hemophagocytic/etiology , Nitriles , Syndrome
16.
J Clin Immunol ; 43(2): 495-511, 2023 02.
Article in English | MEDLINE | ID: mdl-36370291

ABSTRACT

Balancing natural selection is a process by which genetic variants arise in populations that are beneficial to heterozygous carriers, but pathogenic when homozygous. We systematically investigated the prevalence, structural, and functional consequences of pathogenic IL10RA variants that are associated with monogenic inflammatory bowel disease. We identify 36 non-synonymous and non-sense variants in the IL10RA gene. Since the majority of these IL10RA variants have not been functionally characterized, we performed a systematic screening of their impact on STAT3 phosphorylation upon IL-10 stimulation. Based on the geographic accumulation of confirmed pathogenic IL10RA variants in East Asia and in Northeast China, the distribution of infectious disorders worldwide, and the functional evidence of IL-10 signaling in the pathogenesis, we identify Schistosoma japonicum infection as plausible selection pressure driving variation in IL10RA. Consistent with this is a partially augmented IL-10 response in peripheral blood mononuclear cells from heterozygous variant carriers. A parasite-driven heterozygote advantage through reduced IL-10 signaling has implications for health care utilization in regions with high allele frequencies and potentially indicates pathogen eradication strategies that target IL-10 signaling.


Subject(s)
Interleukin-10 , Leukocytes, Mononuclear , Humans , Receptors, Interleukin-10/genetics , Interleukin-10/genetics , Interleukin-10 Receptor alpha Subunit/genetics , Selection, Genetic
17.
J Clin Immunol ; 44(1): 1, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38100037

ABSTRACT

Lymphocyte-specific protein tyrosine kinase (LCK) is an SRC-family kinase critical for initiation and propagation of T-cell antigen receptor (TCR) signaling through phosphorylation of TCR-associated CD3 chains and recruited downstream molecules. Until now, only one case of profound T-cell immune deficiency with complete LCK deficiency [1] caused by a biallelic missense mutation (c.1022T>C, p.L341P) and three cases of incomplete LCK deficiency [2] caused by a biallelic splice site mutation (c.188-2A>G) have been described. Additionally, deregulated LCK expression has been associated with genetically undefined immune deficiencies and hematological malignancies. Here, we describe the second case of complete LCK deficiency in a 6-month-old girl born to consanguineous parents presenting with profound T-cell immune deficiency. Whole exome sequencing (WES) revealed a novel pathogenic biallelic missense mutation in LCK (c.1393T>C, p.C465R), which led to the absence of LCK protein expression and phosphorylation, and a consecutive decrease in proximal TCR signaling. Loss of conventional CD4+ and CD8+ αßT-cells and homeostatic T-cell expansion was accompanied by increased γδT-cell and Treg percentages. Surface CD4 and CD8 co-receptor expression was reduced in the patient T-cells, while the heterozygous mother had impaired CD4 and CD8 surface expression to a lesser extent. We conclude that complete LCK deficiency is characterized by profound T-cell immune deficiency, reduced CD4 and CD8 surface expression, and a characteristic TCR signaling disorder. CD4 and CD8 surface expression may be of value for early detection of mono- and/or biallelic LCK deficiency.


Subject(s)
Immunologic Deficiency Syndromes , Female , Humans , Infant , Phosphorylation , Receptors, Antigen, T-Cell/genetics , Signal Transduction
18.
Gastroenterology ; 162(3): 859-876, 2022 03.
Article in English | MEDLINE | ID: mdl-34780721

ABSTRACT

BACKGROUND & AIMS: Monogenic forms of inflammatory bowel disease (IBD) illustrate the essential roles of individual genes in pathways and networks safeguarding immune tolerance and gut homeostasis. METHODS: To build a taxonomy model, we assessed 165 disorders. Genes were prioritized based on penetrance of IBD and disease phenotypes were integrated with multi-omics datasets. Monogenic IBD genes were classified by (1) overlapping syndromic features, (2) response to hematopoietic stem cell transplantation, (3) bulk RNA-sequencing of 32 tissues, (4) single-cell RNA-sequencing of >50 cell subsets from the intestine of healthy individuals and patients with IBD (pediatric and adult), and (5) proteomes of 43 immune subsets. The model was validated by addition of newly identified monogenic IBD defects. As a proof-of-concept, we explore the intersection between immunometabolism and antimicrobial activity for a group of disorders (G6PC3/SLC37A4). RESULTS: Our quantitative integrated taxonomy defines the cellular landscape of monogenic IBD gene expression across 102 genes with high and moderate penetrance (81 in the model set and 21 genes in the validation set). We illustrate distinct cellular networks, highlight expression profiles across understudied cell types (e.g., CD8+ T cells, neutrophils, epithelial subsets, and endothelial cells) and define genotype-phenotype associations (perianal disease and defective antimicrobial activity). We illustrate processes and pathways shared across cellular compartments and phenotypic groups and highlight cellular immunometabolism with mammalian target of rapamycin activation as one of the converging pathways. There is an overlap of genes and enriched cell-specific expression between monogenic and polygenic IBD. CONCLUSION: Our taxonomy integrates genetic, clinical and multi-omic data; providing a basis for genomic diagnostics and testable hypotheses for disease functions and treatment responses.


Subject(s)
Inflammatory Bowel Diseases/classification , Inflammatory Bowel Diseases/genetics , Age of Onset , Antiporters/genetics , Cells, Cultured , Classification , Gene Expression Profiling , Genetic Association Studies , Genotype , Glucose-6-Phosphatase/genetics , Glucose-6-Phosphate/metabolism , Humans , Inflammatory Bowel Diseases/metabolism , Macrophages , Metabolomics , Monosaccharide Transport Proteins/genetics , Penetrance , Phenotype , Signal Transduction/genetics
19.
Blood Cells Mol Dis ; 99: 102726, 2023 03.
Article in English | MEDLINE | ID: mdl-36696755

ABSTRACT

Leukocyte adhesion deficiency (LAD) is an immunodeficiency caused by defects in the adhesion of leukocytes (especially neutrophils) to the blood vessel wall. As a result, patients with LAD suffer from severe bacterial infections and impaired wound healing, accompanied by neutrophilia. In LAD-I, characterized directly after birth by delayed separation of the umbilical cord, mutations are found in ITGB2, the gene that encodes the ß subunit (CD18) of the ß2 integrins. In the rare LAD-II disease, the fucosylation of selectin ligands is disturbed, caused by mutations in SLC35C1, the gene that encodes a GDP-fucose transporter of the Golgi system. LAD-II patients lack the H and Lewis Lea and Leb blood group antigens. Finally, in LAD-III, the conformational activation of the hematopoietically expressed ß integrins is disturbed, leading to leukocyte and platelet dysfunction. This last syndrome is caused by mutations in FERMT3, encoding the kindlin-3 protein in all blood cells, involved in the regulation of ß integrin conformation. This article contains an update of the mutations that we consider to be relevant for the various forms of LAD.


Subject(s)
Leukocyte-Adhesion Deficiency Syndrome , Humans , Cell Adhesion/genetics , Leukocyte-Adhesion Deficiency Syndrome/genetics , CD18 Antigens/genetics , CD18 Antigens/metabolism , Leukocytes , Mutation
20.
Blood ; 137(14): 1932-1944, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33512427

ABSTRACT

Vacuolar protein sorting 45 homolog (VPS45), a member of the Sec1/Munc18 (SM) family, has been implicated in the regulation of endosomal trafficking. VPS45 deficiency in human patients results in congenital neutropenia, bone marrow fibrosis, and extramedullary renal hematopoiesis. Detailed mechanisms of the VPS45 function are unknown. Here, we show an essential role of mammalian VPS45 in maintaining the intracellular organization of endolysosomal vesicles and promoting recycling of cell-surface receptors. Loss of VPS45 causes defective Rab5-to-Rab7 conversion resulting in trapping of cargos in early endosomes and impaired delivery to lysosomes. In this context, we demonstrate aberrant trafficking of the granulocyte colony-stimulating factor receptor in the absence of VPS45. Furthermore, we find that lack of VPS45 in mice is not compatible with embryonic development. Thus, we identify mammalian VPS45 as a critical regulator of trafficking through the endosomal system and early embryogenesis of mice.


Subject(s)
Endosomes/metabolism , Vesicular Transport Proteins/metabolism , Animals , Endosomes/genetics , Gene Deletion , HeLa Cells , Humans , Lysosomes/genetics , Lysosomes/metabolism , Mice, Knockout , Protein Transport , Vesicular Transport Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL