Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(23): e2407437121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38814864

ABSTRACT

The accessory protease transmembrane protease serine 2 (TMPRSS2) enhances severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uptake into ACE2-expressing cells, although how increased entry impacts downstream viral and host processes remains unclear. To investigate this in more detail, we performed infection assays in engineered cells promoting ACE2-mediated entry with and without TMPRSS2 coexpression. Electron microscopy and inhibitor experiments indicated TMPRSS2-mediated cell entry was associated with increased virion internalization into endosomes, and partially dependent upon clathrin-mediated endocytosis. TMPRSS2 increased panvariant uptake efficiency and enhanced early rates of virus replication, transcription, and secretion, with variant-specific profiles observed. On the host side, transcriptional profiling confirmed the magnitude of infection-induced antiviral and proinflammatory responses were linked to uptake efficiency, with TMPRSS2-assisted entry boosting early antiviral responses. In addition, TMPRSS2-enhanced infections increased rates of cytopathology, apoptosis, and necrosis and modulated virus secretion kinetics in a variant-specific manner. On the virus side, convergent signatures of cell-uptake-dependent innate immune induction were recorded in viral genomes, manifesting as switches in dominant coupled Nsp3 residues whose frequencies were correlated to the magnitude of the cellular response to infection. Experimentally, we demonstrated that selected Nsp3 mutations conferred enhanced interferon antagonism. More broadly, we show that TMPRSS2 orthologues from evolutionarily diverse mammals facilitate panvariant enhancement of cell uptake. In summary, our study uncovers previously unreported associations, linking cell entry efficiency to innate immune activation kinetics, cell death rates, virus secretion dynamics, and convergent selection of viral mutations. These data expand our understanding of TMPRSS2's role in the SARS-CoV-2 life cycle and confirm its broader significance in zoonotic reservoirs and animal models.


Subject(s)
COVID-19 , Immunity, Innate , SARS-CoV-2 , Serine Endopeptidases , Virus Internalization , SARS-CoV-2/immunology , SARS-CoV-2/physiology , SARS-CoV-2/metabolism , Humans , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , COVID-19/virology , COVID-19/immunology , COVID-19/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Virus Replication , Animals , Endocytosis , HEK293 Cells , Chlorocebus aethiops , Cytology
2.
PLoS Negl Trop Dis ; 18(6): e0012264, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38900788

ABSTRACT

Despite continued outbreaks of yellow fever virus (YFV) in endemic regions, data on its environmental stability or guidelines for its effective inactivation is limited. Here, we evaluated the susceptibility of the YFV 17D vaccine strain to inactivation by ethanol, 2-propanol, World Health Organization (WHO)-recommended hand rub formulations I and II, as well as surface disinfectants. In addition, two pathogenic strains were tested to compare inactivation kinetics by WHO-recommended hand rub formulations I and II. Furthermore, environmental stability of the vaccine strain was assessed. YFV 17D particles displayed infectivity half-life decay profiles of ~13 days at room temperature. Despite this extended environmental stability, YFV was efficiently inactivated by alcohols, WHO-recommended hand formulations, and four out of five tested surface disinfectants. These results are useful in defining disinfection protocols to prevent non-vector borne YFV transmission.


Subject(s)
Disinfectants , Virus Inactivation , World Health Organization , Yellow fever virus , Yellow fever virus/drug effects , Disinfectants/pharmacology , Virus Inactivation/drug effects , Humans , Yellow Fever/prevention & control , Yellow Fever/transmission , Yellow Fever/virology , Hand Disinfection/methods , Animals , Chlorocebus aethiops
3.
Viruses ; 11(10)2019 10 17.
Article in English | MEDLINE | ID: mdl-31627415

ABSTRACT

Yellow fever virus (YFV) represents a re-emerging zoonotic pathogen, transmitted by mosquito vectors to humans from primate reservoirs. Sporadic outbreaks of YFV occur in endemic tropical regions, causing a viral hemorrhagic fever (VHF) associated with high mortality rates. Despite a highly effective vaccine, no antiviral treatments currently exist. Therefore, YFV represents a neglected tropical disease and is chronically understudied, with many aspects of YFV biology incompletely defined including host range, host-virus interactions and correlates of host immunity and pathogenicity. In this article, we review the current state of YFV research, focusing on the viral lifecycle, host responses to infection, species tropism and the success and associated limitations of the YFV-17D vaccine. In addition, we highlight the current lack of available treatments and use publicly available sequence and structural data to assess global patterns of YFV sequence diversity and identify potential drug targets. Finally, we discuss how technological advances, including real-time epidemiological monitoring of outbreaks using next-generation sequencing and CRISPR/Cas9 modification of vector species, could be utilized in future battles against this re-emerging pathogen which continues to cause devastating disease.


Subject(s)
Host-Pathogen Interactions , Mosquito Vectors/virology , Primates/virology , Yellow Fever/prevention & control , Yellow fever virus/pathogenicity , Animals , CRISPR-Cas Systems , Disease Outbreaks/prevention & control , Humans , Mosquito Vectors/genetics , Neglected Diseases/prevention & control , Neglected Diseases/virology , Viral Tropism , Yellow Fever/immunology , Yellow Fever/transmission , Yellow Fever Vaccine/immunology , Yellow fever virus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL