Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 22(2): 240-253, 2021 02.
Article in English | MEDLINE | ID: mdl-33432228

ABSTRACT

During the germinal center (GC) reaction, B cells undergo extensive redistribution of cohesin complex and three-dimensional reorganization of their genomes. Yet, the significance of cohesin and architectural programming in the humoral immune response is unknown. Herein we report that homozygous deletion of Smc3, encoding the cohesin ATPase subunit, abrogated GC formation, while, in marked contrast, Smc3 haploinsufficiency resulted in GC hyperplasia, skewing of GC polarity and impaired plasma cell (PC) differentiation. Genome-wide chromosomal conformation and transcriptional profiling revealed defects in GC B cell terminal differentiation programs controlled by the lymphoma epigenetic tumor suppressors Tet2 and Kmt2d and failure of Smc3-haploinsufficient GC B cells to switch from B cell- to PC-defining transcription factors. Smc3 haploinsufficiency preferentially impaired the connectivity of enhancer elements controlling various lymphoma tumor suppressor genes, and, accordingly, Smc3 haploinsufficiency accelerated lymphomagenesis in mice with constitutive Bcl6 expression. Collectively, our data indicate a dose-dependent function for cohesin in humoral immunity to facilitate the B cell to PC phenotypic switch while restricting malignant transformation.


Subject(s)
B-Lymphocytes/metabolism , Cell Cycle Proteins/deficiency , Cell Cycle Proteins/genetics , Cell Transformation, Neoplastic/genetics , Chondroitin Sulfate Proteoglycans/genetics , Chromosomal Proteins, Non-Histone/deficiency , Chromosomal Proteins, Non-Histone/genetics , Gene Dosage , Germinal Center/metabolism , Immunity, Humoral , Lymphoma, B-Cell/genetics , Animals , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Cell Cycle Proteins/metabolism , Cell Differentiation , Cell Proliferation , Cell Transformation, Neoplastic/immunology , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cells, Cultured , Chondroitin Sulfate Proteoglycans/deficiency , Chondroitin Sulfate Proteoglycans/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases , Gene Deletion , Gene Expression Regulation, Neoplastic , Germinal Center/immunology , Germinal Center/pathology , Haploinsufficiency , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/immunology , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Mice, Inbred C57BL , Mice, Knockout , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Signal Transduction , Cohesins
2.
Nat Immunol ; 19(6): 571-582, 2018 06.
Article in English | MEDLINE | ID: mdl-29760532

ABSTRACT

The transcription factor AhR modulates immunity at multiple levels. Here we report that phagocytes exposed to apoptotic cells exhibited rapid activation of AhR, which drove production of the cytokine IL-10. Activation of AhR was dependent on interactions between apoptotic-cell DNA and the pattern-recognition receptor TLR9 that was required for the prevention of immune responses to DNA and histones in vivo. Moreover, disease progression in mouse systemic lupus erythematosus (SLE) correlated with strength of the AhR signal, and the disease course could be altered by modulation of AhR activity. Deletion of AhR in the myeloid lineage caused systemic autoimmunity in mice, and an enhanced AhR transcriptional signature correlated with disease in patients with SLE. Thus, AhR activity induced by apoptotic cell phagocytes maintains peripheral tolerance.


Subject(s)
Apoptosis/immunology , Immune Tolerance/immunology , Lupus Erythematosus, Systemic/immunology , Macrophages/immunology , Receptors, Aryl Hydrocarbon/immunology , Animals , Humans , Mice , Signal Transduction/immunology , Toll-Like Receptor 9/immunology
3.
Mol Cell ; 81(8): 1732-1748.e8, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33730542

ABSTRACT

During self-renewal, cell-type-defining features are drastically perturbed in mitosis and must be faithfully reestablished upon G1 entry, a process that remains largely elusive. Here, we characterized at a genome-wide scale the dynamic transcriptional and architectural resetting of mouse pluripotent stem cells (PSCs) upon mitotic exit. We captured distinct waves of transcriptional reactivation with rapid induction of stem cell genes and transient activation of lineage-specific genes. Topological reorganization at different hierarchical levels also occurred in an asynchronous manner and showed partial coordination with transcriptional resetting. Globally, rapid transcriptional and architectural resetting associated with mitotic retention of H3K27 acetylation, supporting a bookmarking function. Indeed, mitotic depletion of H3K27ac impaired the early reactivation of bookmarked, stem-cell-associated genes. However, 3D chromatin reorganization remained largely unaffected, suggesting that these processes are driven by distinct forces upon mitotic exit. This study uncovers principles and mediators of PSC molecular resetting during self-renewal.


Subject(s)
Chromatin/genetics , Histone Code/genetics , Histones/genetics , Mitosis/genetics , Pluripotent Stem Cells/physiology , Acetylation , Animals , Cell Line , Drosophila/genetics , Male , Mice , Mice, Inbred C57BL , Transcription, Genetic/genetics , Transcriptional Activation/genetics
4.
Nature ; 601(7893): 428-433, 2022 01.
Article in English | MEDLINE | ID: mdl-34937946

ABSTRACT

Although deregulation of transfer RNA (tRNA) biogenesis promotes the translation of pro-tumorigenic mRNAs in cancers1,2, the mechanisms and consequences of tRNA deregulation in tumorigenesis are poorly understood. Here we use a CRISPR-Cas9 screen to focus on genes that have been implicated in tRNA biogenesis, and identify a mechanism by which altered valine tRNA biogenesis enhances mitochondrial bioenergetics in T cell acute lymphoblastic leukaemia (T-ALL). Expression of valine aminoacyl tRNA synthetase is transcriptionally upregulated by NOTCH1, a key oncogene in T-ALL, underlining a role for oncogenic transcriptional programs in coordinating tRNA supply and demand. Limiting valine bioavailability through restriction of dietary valine intake disrupted this balance in mice, resulting in decreased leukaemic burden and increased survival in vivo. Mechanistically, valine restriction reduced translation rates of mRNAs that encode subunits of mitochondrial complex I, leading to defective assembly of complex I and impaired oxidative phosphorylation. Finally, a genome-wide CRISPR-Cas9 loss-of-function screen in differential valine conditions identified several genes, including SLC7A5 and BCL2, whose genetic ablation or pharmacological inhibition synergized with valine restriction to reduce T-ALL growth. Our findings identify tRNA deregulation as a critical adaptation in the pathogenesis of T-ALL and provide a molecular basis for the use of dietary approaches to target tRNA biogenesis in blood malignancies.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Valine-tRNA Ligase , Valine , Animals , Biological Availability , CRISPR-Cas Systems , Diet , Electron Transport Complex I/genetics , Large Neutral Amino Acid-Transporter 1 , Mice , Mitochondria/metabolism , Oxidative Phosphorylation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins c-bcl-2 , RNA, Transfer/genetics , Valine/metabolism , Valine-tRNA Ligase/metabolism
5.
Nature ; 589(7841): 299-305, 2021 01.
Article in English | MEDLINE | ID: mdl-33299181

ABSTRACT

Linker histone H1 proteins bind to nucleosomes and facilitate chromatin compaction1, although their biological functions are poorly understood. Mutations in the genes that encode H1 isoforms B-E (H1B, H1C, H1D and H1E; also known as H1-5, H1-2, H1-3 and H1-4, respectively) are highly recurrent in B cell lymphomas, but the pathogenic relevance of these mutations to cancer and the mechanisms that are involved are unknown. Here we show that lymphoma-associated H1 alleles are genetic driver mutations in lymphomas. Disruption of H1 function results in a profound architectural remodelling of the genome, which is characterized by large-scale yet focal shifts of chromatin from a compacted to a relaxed state. This decompaction drives distinct changes in epigenetic states, primarily owing to a gain of histone H3 dimethylation at lysine 36 (H3K36me2) and/or loss of repressive H3 trimethylation at lysine 27 (H3K27me3). These changes unlock the expression of stem cell genes that are normally silenced during early development. In mice, loss of H1c and H1e (also known as H1f2 and H1f4, respectively) conferred germinal centre B cells with enhanced fitness and self-renewal properties, ultimately leading to aggressive lymphomas with an increased repopulating potential. Collectively, our data indicate that H1 proteins are normally required to sequester early developmental genes into architecturally inaccessible genomic compartments. We also establish H1 as a bona fide tumour suppressor and show that mutations in H1 drive malignant transformation primarily through three-dimensional genome reorganization, which leads to epigenetic reprogramming and derepression of developmentally silenced genes.


Subject(s)
Cell Transformation, Neoplastic/genetics , Chromatin/chemistry , Chromatin/genetics , Histones/deficiency , Histones/genetics , Lymphoma/genetics , Lymphoma/pathology , Alleles , Animals , B-Lymphocytes/metabolism , B-Lymphocytes/pathology , Cell Self Renewal , Chromatin/metabolism , Chromatin Assembly and Disassembly/genetics , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Gene Silencing , Genes, Tumor Suppressor , Germinal Center/pathology , Histones/metabolism , Humans , Lymphoma/metabolism , Mice , Mutation , Stem Cells/metabolism , Stem Cells/pathology
6.
Blood ; 142(1): 90-105, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37146239

ABSTRACT

RNA-binding proteins (RBPs) form a large and diverse class of factors, many members of which are overexpressed in hematologic malignancies. RBPs participate in various processes of messenger RNA (mRNA) metabolism and prevent harmful DNA:RNA hybrids or R-loops. Here, we report that PIWIL4, a germ stem cell-associated RBP belonging to the RNase H-like superfamily, is overexpressed in patients with acute myeloid leukemia (AML) and is essential for leukemic stem cell function and AML growth, but dispensable for healthy human hematopoietic stem cells. In AML cells, PIWIL4 binds to a small number of known piwi-interacting RNA. Instead, it largely interacts with mRNA annotated to protein-coding genic regions and enhancers that are enriched for genes associated with cancer and human myeloid progenitor gene signatures. PIWIL4 depletion in AML cells downregulates the human myeloid progenitor signature and leukemia stem cell (LSC)-associated genes and upregulates DNA damage signaling. We demonstrate that PIWIL4 is an R-loop resolving enzyme that prevents R-loop accumulation on a subset of AML and LSC-associated genes and maintains their expression. It also prevents DNA damage, replication stress, and activation of the ATR pathway in AML cells. PIWIL4 depletion potentiates sensitivity to pharmacological inhibition of the ATR pathway and creates a pharmacologically actionable dependency in AML cells.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/pathology , Hematopoietic Stem Cells/metabolism , Cell Proliferation , Genomics , RNA, Messenger/metabolism , Neoplastic Stem Cells/pathology
7.
Bioinformatics ; 37(23): 4517-4525, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34180989

ABSTRACT

MOTIVATION: B-cell epitopes (BCEs) play a pivotal role in the development of peptide vaccines, immuno-diagnostic reagents and antibody production, and thus in infectious disease prevention and diagnostics in general. Experimental methods used to determine BCEs are costly and time-consuming. Therefore, it is essential to develop computational methods for the rapid identification of BCEs. Although several computational methods have been developed for this task, generalizability is still a major concern, where cross-testing of the classifiers trained and tested on different datasets has revealed accuracies of 51-53%. RESULTS: We describe a new method called EpitopeVec, which uses a combination of residue properties, modified antigenicity scales, and protein language model-based representations (protein vectors) as features of peptides for linear BCE predictions. Extensive benchmarking of EpitopeVec and other state-of-the-art methods for linear BCE prediction on several large and small datasets, as well as cross-testing, demonstrated an improvement in the performance of EpitopeVec over other methods in terms of accuracy and area under the curve. As the predictive performance depended on the species origin of the respective antigens (viral, bacterial and eukaryotic), we also trained our method on a large viral dataset to create a dedicated linear viral BCE predictor with improved cross-testing performance. AVAILABILITY AND IMPLEMENTATION: The software is available at https://github.com/hzi-bifo/epitope-prediction. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Antigens , Peptides , Amino Acid Sequence , Peptides/chemistry , Antigens/chemistry , Software , Epitopes, B-Lymphocyte/chemistry
8.
Trends Immunol ; 40(9): 809-824, 2019 09.
Article in English | MEDLINE | ID: mdl-31422902

ABSTRACT

Epigenetic dysregulation plays a profound role in the pathogenesis of hematological malignancies, which is often the result of somatic mutations of chromatin regulators. Previously, these mutations were largely considered to alter gene expression in two dimensions, by activating or repressing chromatin states; however, research in the last decade has highlighted the increasing impact of the 3D organization of the genome in gene regulation and disease pathogenesis. Here, we summarize the current principles of 3D chromatin organization, how the integrity of the 3D genome governs immune cell development and malignant transformation, as well as how underlying (epi-)genetic drivers of 3D chromatin alterations might act as potential novel therapeutic targets for hematological malignancies.


Subject(s)
Chromatin/genetics , Chromatin/immunology , Hematopoiesis/genetics , Hematopoiesis/immunology , Imaging, Three-Dimensional , Animals , Chromatin/chemistry , Humans
9.
Int J Mol Sci ; 21(12)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32585856

ABSTRACT

Medulloblastomas arise from undifferentiated precursor cells in the cerebellum and account for about 20% of all solid brain tumors during childhood; standard therapies include radiation and chemotherapy, which oftentimes come with severe impairment of the cognitive development of the young patients. Here, we show that the posttranscriptional regulator Y-box binding protein 1 (YBX1), a DNA- and RNA-binding protein, acts as an oncogene in medulloblastomas by regulating cellular survival and apoptosis. We observed different cellular responses upon YBX1 knockdown in several medulloblastoma cell lines, with significantly altered transcription and subsequent apoptosis rates. Mechanistically, PAR-CLIP for YBX1 and integration with RNA-Seq data uncovered direct posttranscriptional control of the heterochromatin-associated gene CBX5; upon YBX1 knockdown and subsequent CBX5 mRNA instability, heterochromatin-regulated genes involved in inflammatory response, apoptosis and death receptor signaling were de-repressed. Thus, YBX1 acts as an oncogene in medulloblastoma through indirect transcriptional regulation of inflammatory genes regulating apoptosis and represents a promising novel therapeutic target in this tumor entity.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Gene Expression Regulation, Neoplastic , Heterochromatin/genetics , Inflammation/pathology , Medulloblastoma/pathology , RNA, Messenger/metabolism , Y-Box-Binding Protein 1/metabolism , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/immunology , Cerebellar Neoplasms/metabolism , Cerebellar Neoplasms/pathology , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/genetics , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Medulloblastoma/genetics , Medulloblastoma/immunology , Medulloblastoma/metabolism , RNA, Messenger/genetics , Tumor Cells, Cultured , Y-Box-Binding Protein 1/genetics
10.
J Biol Chem ; 293(40): 15359-15369, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30126842

ABSTRACT

The RNA-binding protein Musashi 2 (MSI2) has emerged as an important regulator in cancer initiation, progression, and drug resistance. Translocations and deregulation of the MSI2 gene are diagnostic of certain cancers, including chronic myeloid leukemia (CML) with translocation t(7;17), acute myeloid leukemia (AML) with translocation t(10;17), and some cases of B-precursor acute lymphoblastic leukemia (pB-ALL). To better understand the function of MSI2 in leukemia, the mRNA targets that are bound and regulated by MSI2 and their MSI2-binding motifs need to be identified. To this end, using photoactivatable ribonucleoside cross-linking and immunoprecipitation (PAR-CLIP) and the multiple EM for motif elicitation (MEME) analysis tool, here we identified MSI2's mRNA targets and the consensus RNA-recognition element (RRE) motif recognized by MSI2 (UUAG). Of note, MSI2 knockdown altered the expression of several genes with roles in eukaryotic initiation factor 2 (eIF2), hepatocyte growth factor (HGF), and epidermal growth factor (EGF) signaling pathways. We also show that MSI2 regulates classic interleukin-6 (IL-6) signaling by promoting the degradation of the mRNA of IL-6 signal transducer (IL6ST or GP130), which, in turn, affected the phosphorylation statuses of signal transducer and activator of transcription 3 (STAT3) and the mitogen-activated protein kinase ERK. In summary, we have identified multiple MSI2-regulated mRNAs and provided evidence that MSI2 controls IL6ST activity that control oncogenic signaling networks. Our findings may help inform strategies for unraveling the role of MSI2 in leukemia to pave the way for the development of targeted therapies.


Subject(s)
Cytokine Receptor gp130/genetics , Interleukin-6/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Transcriptome , Base Sequence , Binding Sites , Cytokine Receptor gp130/metabolism , Epidermal Growth Factor/genetics , Epidermal Growth Factor/metabolism , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Gene Expression Profiling , Gene Expression Regulation , HEK293 Cells , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/metabolism , Humans , Immunoprecipitation , Interleukin-6/metabolism , Leukemia/genetics , Leukemia/metabolism , Leukemia/pathology , Light , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/metabolism , Models, Biological , Protein Binding , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction
11.
J Virol ; 92(3)2018 02 01.
Article in English | MEDLINE | ID: mdl-29142134

ABSTRACT

Innate immune activation is essential to mount an effective antiviral response and to prime adaptive immunity. Although a crucial role of CD169+ cells during vesicular stomatitis virus (VSV) infections is increasingly recognized, factors regulating CD169+ cells during viral infections remain unclear. Here, we show that tumor necrosis factor is produced by CD11b+ Ly6C+ Ly6G+ cells following infection with VSV. The absence of TNF or TNF receptor 1 (TNFR1) resulted in reduced numbers of CD169+ cells and in reduced type I interferon (IFN-I) production during VSV infection, with a severe disease outcome. Specifically, TNF triggered RelA translocation into the nuclei of CD169+ cells; this translocation was inhibited when the paracaspase MALT-1 was absent. Consequently, MALT1 deficiency resulted in reduced VSV replication, defective innate immune activation, and development of severe disease. These findings indicate that TNF mediates the maintenance of CD169+ cells and innate and adaptive immune activation during VSV infection.IMPORTANCE Over the last decade, strategically placed CD169+ metallophilic macrophages in the marginal zone of the murine spleen and lymph nodes (LN) have been shown to play a very important role in host defense against viral pathogens. CD169+ macrophages have been shown to activate innate and adaptive immunity via "enforced virus replication," a controlled amplification of virus particles. However, the factors regulating the CD169+ macrophages remain to be studied. In this paper, we show that after vesicular stomatitis virus infection, phagocytes produce tumor necrosis factor (TNF), which signals via TNFR1, and promote enforced virus replication in CD169+ macrophages. Consequently, lack of TNF or TNFR1 resulted in defective immune activation and VSV clearance.


Subject(s)
Interferon Type I/immunology , Macrophages/immunology , Tumor Necrosis Factor-alpha/immunology , Vesicular Stomatitis/immunology , Adaptive Immunity , Animals , Immunity, Innate , Macrophages/virology , Mice , Mice, Inbred C57BL , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/genetics , Receptors, Tumor Necrosis Factor, Type I/immunology , Sialic Acid Binding Ig-like Lectin 1 , Transcription Factor RelA/metabolism , Vesiculovirus/physiology , Virus Replication
12.
Haematologica ; 104(1): 35-46, 2019 01.
Article in English | MEDLINE | ID: mdl-30093397

ABSTRACT

The homeobox gene HLXB9 encodes for the transcription factor HB9, which is essential for pancreatic as well as motor neuronal development. Beside its physiological expression pattern, aberrant HB9 expression has been observed in several neoplasias. Especially in infant translocation t(7;12) acute myeloid leukemia, aberrant HB9 expression is the only known molecular hallmark and is assumed to be a key factor in leukemic transformation. However, so far, only poor functional data exist addressing the oncogenic potential of HB9 or its influence on hematopoiesis. We investigated the influence of HB9 on cell proliferation and cell cycle in vitro, as well as on hematopoietic stem cell differentiation in vivo using murine and human model systems. In vitro, HB9 expression led to premature senescence in human HT1080 and murine NIH3T3 cells, providing for the first time evidence for an oncogenic potential of HB9. Onset of senescence was characterized by induction of the p53-p21 tumor suppressor network, resulting in growth arrest, accompanied by morphological transformation and expression of senescence-associated ß-galactosidase. In vivo, HB9-transduced primary murine hematopoietic stem and progenitor cells underwent a profound differentiation arrest and accumulated at the megakaryocyte/erythrocyte progenitor stage. In line, gene expression analyses revealed de novo expression of erythropoiesis-related genes in human CD34+hematopoietic stem and progenitor cells upon HB9 expression. In summary, the novel findings of HB9-dependent premature senescence and myeloid-biased perturbed hematopoietic differentiation, for the first time shed light on the oncogenic properties of HB9 in translocation t(7;12) acute myeloid leukemia.


Subject(s)
Cell Cycle , Cell Differentiation , Cellular Senescence , Gene Expression Regulation, Leukemic , Hematopoietic Stem Cells/metabolism , Homeodomain Proteins/biosynthesis , Leukemia, Myeloid, Acute/metabolism , Neoplasm Proteins/biosynthesis , Transcription Factors/biosynthesis , Animals , Erythropoiesis/genetics , Hematopoietic Stem Cells/pathology , Homeodomain Proteins/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Male , Mice , NIH 3T3 Cells , Neoplasm Proteins/genetics , Transcription Factors/genetics , Translocation, Genetic
13.
Genes Chromosomes Cancer ; 56(2): 159-167, 2017 02.
Article in English | MEDLINE | ID: mdl-27717083

ABSTRACT

For reasons not yet understood, nearly all infants with acute lymphoblastic leukemia (ALL) are diagnosed with the B-cell type, with T-ALL in infancy representing a very rare exception. Clinical and molecular knowledge about infant T-ALL is still nearly completely lacking and it is also still unclear whether it represents a distinct disease compared to childhood T-ALL. To address this, we performed exome sequencing of three infant cases, which enabled the detection of mutations in NOTCH2, NOTCH3, PTEN, and KRAS. When analyzing the transcriptomes and miRNomes of the three infant and an additional six childhood T-ALL samples, we found 760 differentially expressed mRNAs and 58 differentially expressed miRNAs between these two cohorts. Correlation analysis for differentially expressed miRNA-mRNA target pairs revealed 47 miRNA-mRNA pairs, with many of them previously described to be aberrantly expressed in leukemia and cancer. Pathway analysis revealed differentially expressed pathways and upstream regulators related to the immune system or cancerogenesis such as the ERK5 pathway, which was activated in infant T-ALL. In summary, there are distinct molecular features in infant compared to childhood T-ALL on a transcriptomic and epigenetic level, which potentially have an impact on the development and course of the disease. © 2016 Wiley Periodicals, Inc.


Subject(s)
Biomarkers, Tumor/genetics , Epigenesis, Genetic/genetics , Gene Expression Profiling , Gene Expression Regulation, Leukemic , MicroRNAs/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Transcriptome/genetics , Adolescent , Child , Child, Preschool , Female , Follow-Up Studies , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Male , Prognosis
14.
Haematologica ; 101(11): 1380-1389, 2016 11.
Article in English | MEDLINE | ID: mdl-27390358

ABSTRACT

MicroRNA are well-established players in post-transcriptional gene regulation. However, information on the effects of microRNA deregulation mainly relies on bioinformatic prediction of potential targets, whereas proof of the direct physical microRNA/target messenger RNA interaction is mostly lacking. Within the International Cancer Genome Consortium Project "Determining Molecular Mechanisms in Malignant Lymphoma by Sequencing", we performed miRnome sequencing from 16 Burkitt lymphomas, 19 diffuse large B-cell lymphomas, and 21 follicular lymphomas. Twenty-two miRNA separated Burkitt lymphomas from diffuse large B-cell lymphomas/follicular lymphomas, of which 13 have shown regulation by MYC. Moreover, we found expression of three hitherto unreported microRNA. Additionally, we detected recurrent mutations of hsa-miR-142 in diffuse large B-cell lymphomas and follicular lymphomas, and editing of the hsa-miR-376 cluster, providing evidence for microRNA editing in lymphomagenesis. To interrogate the direct physical interactions of microRNA with messenger RNA, we performed Argonaute-2 photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation experiments. MicroRNA directly targeted 208 messsenger RNA in the Burkitt lymphomas and 328 messenger RNA in the non-Burkitt lymphoma models. This integrative analysis discovered several regulatory pathways of relevance in lymphomagenesis including Ras, PI3K-Akt and MAPK signaling pathways, also recurrently deregulated in lymphomas by mutations. Our dataset reveals that messenger RNA deregulation through microRNA is a highly relevant mechanism in lymphomagenesis.


Subject(s)
Lymphoma, B-Cell/genetics , MicroRNAs/metabolism , RNA, Messenger/metabolism , Sequence Analysis, RNA/methods , Adolescent , Burkitt Lymphoma/genetics , Child , Child, Preschool , Female , Gene Expression Profiling , Germinal Center , Humans , Infant , Infant, Newborn , Lymphoma, Follicular/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Male , MicroRNAs/genetics , Mutation , RNA Editing
15.
Nucleic Acids Res ; 40(Database issue): D1211-5, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22080561

ABSTRACT

T-DNA insertion mutants are very valuable for reverse genetics in Arabidopsis thaliana. Several projects have generated large sequence-indexed collections of T-DNA insertion lines, of which GABI-Kat is the second largest resource worldwide. User access to the collection and its Flanking Sequence Tags (FSTs) is provided by the front end SimpleSearch (http://www.GABI-Kat.de). Several significant improvements have been implemented recently. The database now relies on the TAIRv10 genome sequence and annotation dataset. All FSTs have been newly mapped using an optimized procedure that leads to improved accuracy of insertion site predictions. A fraction of the collection with weak FST yield was re-analysed by generating new FSTs. Along with newly found predictions for older sequences about 20,000 new FSTs were included in the database. Information about groups of FSTs pointing to the same insertion site that is found in several lines but is real only in a single line are included, and many problematic FST-to-line links have been corrected using new wet-lab data. SimpleSearch currently contains data from ~71,000 lines with predicted insertions covering 62.5% of the 27,206 nuclear protein coding genes, and offers insertion allele-specific data from 9545 confirmed lines that are available from the Nottingham Arabidopsis Stock Centre.


Subject(s)
Arabidopsis/genetics , DNA, Bacterial , Databases, Nucleic Acid , Mutagenesis, Insertional , Alleles , Base Sequence , Chromosome Mapping , Internet , Molecular Sequence Data , Mutation , Sequence Tagged Sites
16.
Nat Struct Mol Biol ; 31(1): 125-140, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38053013

ABSTRACT

Mammalian embryogenesis commences with two pivotal and binary cell fate decisions that give rise to three essential lineages: the trophectoderm, the epiblast and the primitive endoderm. Although key signaling pathways and transcription factors that control these early embryonic decisions have been identified, the non-coding regulatory elements through which transcriptional regulators enact these fates remain understudied. Here, we characterize, at a genome-wide scale, enhancer activity and 3D connectivity in embryo-derived stem cell lines that represent each of the early developmental fates. We observe extensive enhancer remodeling and fine-scale 3D chromatin rewiring among the three lineages, which strongly associate with transcriptional changes, although distinct groups of genes are irresponsive to topological changes. In each lineage, a high degree of connectivity, or 'hubness', positively correlates with levels of gene expression and enriches for cell-type specific and essential genes. Genes within 3D hubs also show a significantly stronger probability of coregulation across lineages compared to genes in linear proximity or within the same contact domains. By incorporating 3D chromatin features, we build a predictive model for transcriptional regulation (3D-HiChAT) that outperforms models using only 1D promoter or proximal variables to predict levels and cell-type specificity of gene expression. Using 3D-HiChAT, we identify, in silico, candidate functional enhancers and hubs in each cell lineage, and with CRISPRi experiments, we validate several enhancers that control gene expression in their respective lineages. Our study identifies 3D regulatory hubs associated with the earliest mammalian lineages and describes their relationship to gene expression and cell identity, providing a framework to comprehensively understand lineage-specific transcriptional behaviors.


Subject(s)
Gene Expression Regulation, Developmental , Regulatory Sequences, Nucleic Acid , Animals , Promoter Regions, Genetic/genetics , Chromatin/genetics , Cell Lineage/genetics , Gene Expression , Enhancer Elements, Genetic/genetics , Mammals/genetics
17.
Cell Rep Med ; 5(3): 101465, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38460518

ABSTRACT

The manipulation of T cell metabolism to enhance anti-tumor activity is an area of active investigation. Here, we report that activating the amino acid starvation response in effector CD8+ T cells ex vivo using the general control non-depressible 2 (GCN2) agonist halofuginone (halo) enhances oxidative metabolism and effector function. Mechanistically, we identified autophagy coupled with the CD98-mTOR axis as key downstream mediators of the phenotype induced by halo treatment. The adoptive transfer of halo-treated CD8+ T cells into tumor-bearing mice led to robust tumor control and curative responses. Halo-treated T cells synergized in vivo with a 4-1BB agonistic antibody to control tumor growth in a mouse model resistant to immunotherapy. Importantly, treatment of human CD8+ T cells with halo resulted in similar metabolic and functional reprogramming. These findings demonstrate that activating the amino acid starvation response with the GCN2 agonist halo can enhance T cell metabolism and anti-tumor activity.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , Animals , Mice , Immunotherapy, Adoptive/methods , Neoplasms/pathology , Immunotherapy , Amino Acids
18.
Biomedicines ; 11(7)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37509693

ABSTRACT

The incidence of melanoma, being one of the most commonly occurring cancers, has been rising since the past decade. Patients at advanced stages of the disease have very poor prognoses, as opposed to at the earlier stages. The conventional targeted therapy is well defined and effective for advanced-stage melanomas for patients not responding to the standard-of-care immunotherapy. However, targeted therapies do not prove to be as effective as patients inevitably develop V-Raf Murine Sarcoma Viral Oncogene Homolog B (BRAF)-inhibitor resistance to the respective drugs. Factors which are driving melanoma drug resistance mainly involve mutations in the mitogen-activated protein kinase (MAPK) pathway, e.g., BRAF splice variants, neuroblastoma RAS viral oncogene homolog (NRAS) amplification or parallel survival pathways. However, those mechanisms do not explain all cases of occurring resistances. Therefore, other factors accounting for BRAFi resistance must be better understood. Among them there are long non-coding RNAs (lncRNAs), but these remain functionally poorly understood. Here, we conduct a comprehensive, unbiased, and integrative study of lncRNA expression, coupled with a Clustered Regularly Interspaced Short Palindromic Repeats/Cas9-mediated activation (CRISPRa) and small molecule inhibitor screening for BRAF inhibitor resistance to expand the knowledge of potentially druggable lncRNAs, their function, and pave the way for eventual combinatorial treatment approaches targeting diverse pathways in melanoma.

19.
bioRxiv ; 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37577543

ABSTRACT

Mammalian embryogenesis commences with two pivotal and binary cell fate decisions that give rise to three essential lineages, the trophectoderm (TE), the epiblast (EPI) and the primitive endoderm (PrE). Although key signaling pathways and transcription factors that control these early embryonic decisions have been identified, the non-coding regulatory elements via which transcriptional regulators enact these fates remain understudied. To address this gap, we have characterized, at a genome-wide scale, enhancer activity and 3D connectivity in embryo-derived stem cell lines that represent each of the early developmental fates. We observed extensive enhancer remodeling and fine-scale 3D chromatin rewiring among the three lineages, which strongly associate with transcriptional changes, although there are distinct groups of genes that are irresponsive to topological changes. In each lineage, a high degree of connectivity or "hubness" positively correlates with levels of gene expression and enriches for cell-type specific and essential genes. Genes within 3D hubs also show a significantly stronger probability of coregulation across lineages, compared to genes in linear proximity or within the same contact domains. By incorporating 3D chromatin features, we build a novel predictive model for transcriptional regulation (3D-HiChAT), which outperformed models that use only 1D promoter or proximal variables in predicting levels and cell-type specificity of gene expression. Using 3D-HiChAT, we performed genome-wide in silico perturbations to nominate candidate functional enhancers and hubs in each cell lineage, and with CRISPRi experiments we validated several novel enhancers that control expression of one or more genes in their respective lineages. Our study comprehensively identifies 3D regulatory hubs associated with the earliest mammalian lineages and describes their relationship to gene expression and cell identity, providing a framework to understand lineage-specific transcriptional behaviors.

20.
Front Immunol ; 13: 889075, 2022.
Article in English | MEDLINE | ID: mdl-36032139

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) are myeloid precursors that exert potent immunosuppressive properties in cancer. Despite the extensive knowledge on mechanisms implicated in mobilization, recruitment, and function of MDSCs, their therapeutic targeting remains an unmet need in cancer immunotherapy, suggesting that unappreciated mechanisms of MDSC-mediated suppression exist. Herein, we demonstrate an important role of NLRP3 inflammasome in the functional properties of MDSCs in tumor-bearing hosts. Specifically, Nlrp3-deficient mice exhibited reduced tumor growth compared to wild-type animals and induction of robust anti-tumor immunity, accompanied by re-wiring of the MDSC compartment. Interestingly, both monocytic (M-MDSCs) and granulocytic (G-MDSCs) subsets from Nlrp3-/- mice displayed impaired suppressive activity and demonstrated significant transcriptomic alterations supporting the loss-of-function and associated with metabolic re-programming. Finally, therapeutic targeting of NLRP3 inhibited tumor development and re-programmed the MDSC compartment. These findings propose that targeting NLRP3 in MDSCs could overcome tumor-induced tolerance and may provide new checkpoints of cancer immunotherapy.


Subject(s)
Myeloid-Derived Suppressor Cells , Animals , Cell Line, Tumor , Immunotherapy , Inflammasomes , Mice , NLR Family, Pyrin Domain-Containing 3 Protein
SELECTION OF CITATIONS
SEARCH DETAIL