Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Ann Clin Transl Neurol ; 11(8): 1988-1998, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38965832

ABSTRACT

OBJECTIVE: In light of clinical trials and disease-modifying therapies, an early identification of patients at-risk of developing Alzheimer's disease (AD) is crucial. Blood-based biomarkers have shown promising results regarding the in vivo detection of the earliest neuropathological changes in AD. Herein, we investigated the ability of plasma p-tau181 to act as a prescreening marker for amyloid positivity in a heterogeneous memory clinic-based cohort. METHODS: In this retrospective cross-sectional study, we included a total of 115 patients along the clinical AD continuum (mild cognitive impairment [MCI] due to AD, n = 62, probable AD dementia, n = 53). Based on their biomarker status, they were stratified into an amyloid-positive (Aß+, n = 88) or amyloid-negative cohort (Aß-, n = 27). Plasma and CSF p-tau181 concentrations were quantified using an ultrasensitive single-molecule array (SIMOA©). Furthermore, age- and sex-adjusted receiver operating characteristic (ROC) curves were calculated and the area under the curve (AUC) of each model was compared using DeLong's test for correlated AUC curves. RESULTS: The median (interquartile range [IQR]) concentration of plasma p-tau181 was significantly higher in Aß+ patients (3.6 pg/mL [2.5-4.6]), compared with Aß- patients (1.7 pg/mL [1.2-1.9], p < 0.001). Regarding the distinction between Aß+ and Aß- patients and the prediction of amyloid positivity, a high diagnostic accuracy for plasma p-tau181 with an AUC of 0.89 (95% CI = 0.82-0.95) was calculated. Adding the risk factors, age and APOE4, to the model did not significantly improve its performance. INTERPRETATION: Our findings demonstrate that plasma p-tau181 could be a noninvasive and feasible prescreening marker for amyloid positivity in a heterogeneous clinical AD cohort and therefore help in identifying those who would benefit from more invasive assessment of amyloid pathology.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Cognitive Dysfunction , tau Proteins , Humans , tau Proteins/blood , tau Proteins/cerebrospinal fluid , Male , Female , Aged , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Cognitive Dysfunction/blood , Cognitive Dysfunction/diagnosis , Biomarkers/blood , Cross-Sectional Studies , Retrospective Studies , Middle Aged , Amyloid beta-Peptides/blood , Aged, 80 and over , Cohort Studies
2.
Sci Adv ; 10(24): eadm8449, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38865459

ABSTRACT

The accumulation of protein aggregates is a hallmark of many diseases, including Alzheimer's disease. As a major pillar of the proteostasis network, autophagy mediates the degradation of protein aggregates. The autophagy cargo receptor p62 recognizes ubiquitin on proteins and cooperates with TAX1BP1 to recruit the autophagy machinery. Paradoxically, protein aggregates are not degraded in various diseases despite p62 association. Here, we reconstituted the recognition by the autophagy receptors of physiological and pathological Tau forms. Monomeric Tau recruits p62 and TAX1BP1 via the sequential actions of the chaperone and ubiquitylation machineries. In contrast, Tau fibrils from Alzheimer's disease brains are recognized by p62 but fail to recruit TAX1BP1. This failure is due to the masking of fibrils ubiquitin moieties by p62. Tau fibrils are resistant to deubiquitylation, and, thus, this nonproductive interaction of p62 with the fibrils is irreversible. Our results shed light on the mechanism underlying autophagy evasion by protein aggregates and their consequent accumulation in disease.


Subject(s)
Autophagy , Sequestosome-1 Protein , Ubiquitination , tau Proteins , Humans , tau Proteins/metabolism , tau Proteins/chemistry , Sequestosome-1 Protein/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Protein Binding , Protein Aggregates , Intracellular Signaling Peptides and Proteins/metabolism , Ubiquitin/metabolism , Neoplasm Proteins
3.
Front Robot AI ; 11: 1355409, 2024.
Article in English | MEDLINE | ID: mdl-38933084

ABSTRACT

Objectives: We recently introduced a frameless, navigated, robot-driven laser tool for depth electrode implantation as an alternative to frame-based procedures. This method has only been used in cadaver and non-recovery studies. This is the first study to test the robot-driven laser tool in an in vivo recovery animal study. Methods: A preoperative computed tomography (CT) scan was conducted to plan trajectories in sheep specimens. Burr hole craniotomies were performed using a frameless, navigated, robot-driven laser tool. Depth electrodes were implanted after cut-through detection was confirmed. The electrodes were cut at the skin level postoperatively. Postoperative imaging was performed to verify accuracy. Histopathological analysis was performed on the bone, dura, and cortex samples. Results: Fourteen depth electrodes were implanted in two sheep specimens. Anesthetic protocols did not show any intraoperative irregularities. One sheep was euthanized on the same day of the procedure while the other sheep remained alive for 1 week without neurological deficits. Postoperative MRI and CT showed no intracerebral bleeding, infarction, or unintended damage. The average bone thickness was 6.2 mm (range 4.1-8.0 mm). The angulation of the planned trajectories varied from 65.5° to 87.4°. The deviation of the entry point performed by the frameless laser beam ranged from 0.27 mm to 2.24 mm. The histopathological analysis did not reveal any damage associated with the laser beam. Conclusion: The novel robot-driven laser craniotomy tool showed promising results in this first in vivo recovery study. These findings indicate that laser craniotomies can be performed safely and that cut-through detection is reliable.

4.
Ann Clin Transl Neurol ; 11(6): 1579-1589, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38689506

ABSTRACT

OBJECTIVE: Mutations in the gene encoding for optineurin (OPTN) have been reported in the context of different neurodegenerative diseases including the amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) spectrum. Based on single case reports, neuropathological data in OPTN mutation carriers have revealed transactive response DNA-binding protein 43 kDa (TDP-43) pathology, in addition to accumulations of tau and alpha-synuclein. Herein, we present two siblings from a consanguineous family with a homozygous frameshift mutation in the OPTN gene and different clinical presentations. METHODS: Both affected siblings underwent (i) clinical, (ii) neurophysiological, (iii) neuropsychological, (iv) radiological, and (v) laboratory examinations, and (vi) whole-exome sequencing (WES). Postmortem histopathological examination was conducted in the index patient, who deceased at the age of 41. RESULTS: The index patient developed rapidly progressing clinical features of upper and lower motor neuron dysfunction as well as apathy and cognitive deterioration at the age of 41. Autopsy revealed an ALS-FTLD pattern associated with prominent neuronal and oligodendroglial TDP-43 pathology, and an atypical limbic 4-repeat tau pathology reminiscent of argyrophilic grain disease. The brother of the index patient exhibited behavioral changes and mnestic deficits at the age of 38 and was diagnosed with behavioral FTD 5 years later, without any evidence of motor neuron dysfunction. WES revealed a homozygous frameshift mutation in the OPTN gene in both siblings (NM_001008212.2: c.1078_1079del; p.Lys360ValfsTer18). INTERPRETATION: OPTN mutations can be associated with extensive TDP-43 pathology and limbic-predominant tauopathy and present with a heterogeneous clinical phenotype within the ALS-FTD spectrum within the same family.


Subject(s)
Amyotrophic Lateral Sclerosis , Cell Cycle Proteins , Frontotemporal Dementia , Membrane Transport Proteins , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , Amyotrophic Lateral Sclerosis/diagnosis , Membrane Transport Proteins/genetics , Cell Cycle Proteins/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Frontotemporal Dementia/physiopathology , Male , Adult , Female , Pedigree , Transcription Factor TFIIIA/genetics , Siblings , Frameshift Mutation , Homozygote
5.
Front Immunol ; 15: 1376456, 2024.
Article in English | MEDLINE | ID: mdl-38827736

ABSTRACT

Background: Anti-IgLON5 disease is a rare chronic autoimmune disorder characterized by IgLON5 autoantibodies predominantly of the IgG4 subclass. Distinct pathogenic effects were described for anti-IgLON5 IgG1 and IgG4, however, with uncertain clinical relevance. Methods: IgLON5-specific IgG1-4 levels were measured in 46 sera and 20 cerebrospinal fluid (CSF) samples from 13 HLA-subtyped anti-IgLON5 disease patients (six females, seven males) using flow cytometry. Intervals between two consecutive serum or CSF samplings (31 and 10 intervals, respectively) were categorized with regard to the immunomodulatory treatment active at the end of the interval, changes of anti-IgLON5 IgG1 and IgG4 levels, and disease severity. Intrathecal anti-IgLON5 IgG4 synthesis (IS) was assessed using a quantitative method. Results: The median age at onset was 66 years (range: 54-75), disease duration 10 years (range: 15-156 months), and follow-up 25 months (range: 0-83). IgLON5-specific IgG4 predominance was observed in 38 of 46 (83%) serum and 11 of 20 (55%) CSF samples. Anti-IgLON5 IgG4 levels prior clinical improvement in CSF but not serum were significantly lower than in those prior stable/progressive disease. Compared to IgLON5 IgG4 levels in serum, CSF levels in HLA-DRB1*10:01 carriers were significantly higher than in non-carriers. Indeed, IgLON5-specific IgG4 IS was demonstrated not only in four of five HLA-DRB1*10:01 carriers but also in one non-carrier. Immunotherapy was associated with decreased anti-IgGLON5 IgG serum levels. In CSF, lower anti-IgLON5 IgG was associated with immunosuppressive treatments used in combination, that is, corticosteroids and/or azathioprine plus intravenous immunoglobulins or rituximab. Conclusion: Our findings might indicate that CSF IgLON5-specific IgG4 is frequently produced intrathecally, especially in HLA-DRB1*10:01 carriers. Intrathecally produced IgG4 may be clinically relevant. While many immunotherapies reduce serum IgLON5 IgG levels, more intense immunotherapies induce clinical improvement and may be able to target intrathecally produced anti-IgLON5 IgG. Further studies need to confirm whether anti-IgLON5 IgG4 IS is a suitable prognostic and predictive biomarker in anti-IgLON5 disease.


Subject(s)
Autoantibodies , Immunoglobulin G , Humans , Female , Immunoglobulin G/cerebrospinal fluid , Immunoglobulin G/blood , Immunoglobulin G/immunology , Male , Middle Aged , Aged , Autoantibodies/blood , Autoantibodies/immunology , Autoantibodies/cerebrospinal fluid , Cell Adhesion Molecules, Neuronal/immunology , HLA Antigens/immunology , Clinical Relevance
SELECTION OF CITATIONS
SEARCH DETAIL