Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Am J Respir Crit Care Med ; 207(3): 283-299, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36047984

ABSTRACT

Rationale: Although type II alveolar epithelial cells (AEC2s) are chronically injured in idiopathic pulmonary fibrosis (IPF), they contribute to epithelial regeneration in IPF. Objectives: We hypothesized that Notch signaling may contribute to AEC2 proliferation, dedifferentiation characterized by loss of surfactant processing machinery, and lung fibrosis in IPF. Methods: We applied microarray analysis, kinome profiling, flow cytometry, immunofluorescence analysis, western blotting, quantitative PCR, and proliferation and surface activity analysis to study epithelial differentiation, proliferation, and matrix deposition in vitro (AEC2 lines, primary murine/human AEC2s), ex vivo (human IPF-derived precision-cut lung slices), and in vivo (bleomycin and pepstatin application, Notch1 [Notch receptor 1] intracellular domain overexpression). Measurements and Main Results: We document here extensive SP-B and -C (surfactant protein-B and -C) processing defects in IPF AEC2s, due to loss of Napsin A, resulting in increased intra-alveolar surface tension and alveolar collapse and induction of endoplasmic reticulum stress in AEC2s. In vivo pharmacological inhibition of Napsin A results in the development of AEC2 injury and overt lung fibrosis. We also demonstrate that Notch1 signaling is already activated early in IPF and determines AEC2 fate by inhibiting differentiation (reduced lamellar body compartment, reduced capacity to process hydrophobic SP) and by causing increased epithelial proliferation and development of lung fibrosis, putatively via altered JAK (Janus kinase)/Stat (signal transducer and activator of transcription) signaling in AEC2s. Conversely, inhibition of Notch signaling in IPF-derived precision-cut lung slices improved the surfactant processing capacity of AEC2s and reversed fibrosis. Conclusions: Notch1 is a central regulator of AEC2 fate in IPF. It induces alveolar epithelial proliferation and loss of Napsin A and of surfactant proprotein processing, and it contributes to fibroproliferation.


Subject(s)
Idiopathic Pulmonary Fibrosis , Pulmonary Surfactants , Humans , Mice , Animals , Surface-Active Agents , Lung , Alveolar Epithelial Cells , Bleomycin , Receptor, Notch1
2.
Int J Mol Sci ; 23(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35628414

ABSTRACT

Maternal obesity predisposes for hepato-metabolic disorders early in life. However, the underlying mechanisms causing early onset dysfunction of the liver and metabolism remain elusive. Since obesity is associated with subacute chronic inflammation and accelerated aging, we test the hypothesis whether maternal obesity induces aging processes in the developing liver and determines thereby hepatic growth. To this end, maternal obesity was induced with high-fat diet (HFD) in C57BL/6N mice and male offspring were studied at the end of the lactation [postnatal day 21 (P21)]. Maternal obesity induced an obese body composition with metabolic inflammation and a marked hepatic growth restriction in the male offspring at P21. Proteomic and molecular analyses revealed three interrelated mechanisms that might account for the impaired hepatic growth pattern, indicating prematurely induced aging processes: (1) Increased DNA damage response (γH2AX), (2) significant upregulation of hepatocellular senescence markers (Cdnk1a, Cdkn2a); and (3) inhibition of hepatic insulin/insulin-like growth factor (IGF)-1-AKT-p38-FoxO1 signaling with an insufficient proliferative growth response. In conclusion, our murine data demonstrate that perinatal obesity induces an obese body composition in male offspring with hepatic growth restriction through a possible premature hepatic aging that is indicated by a pathologic sequence of inflammation, DNA damage, senescence, and signs of a possibly insufficient regenerative capacity.


Subject(s)
Forkhead Box Protein O1 , Insulin-Like Growth Factor I , Obesity, Maternal , Prenatal Exposure Delayed Effects , Proto-Oncogene Proteins c-akt , Animals , DNA Damage , Female , Forkhead Box Protein O1/metabolism , Inflammation/metabolism , Insulin-Like Growth Factor I/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Obesity, Maternal/metabolism , Pregnancy , Prenatal Exposure Delayed Effects/etiology , Prenatal Exposure Delayed Effects/metabolism , Proteomics , Proto-Oncogene Proteins c-akt/metabolism
3.
Thorax ; 70(11): 1022-32, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26359372

ABSTRACT

BACKGROUND: Activation and differentiation of fibroblasts into contractile protein-expressing myofibroblasts and their acquired apoptosis-resistant phenotype are critical factors towards the development of idiopathic pulmonary fibrosis (IPF), a fatal disease characterised by distorted pulmonary structure and excessive extracellular matrix (ECM) deposition. The molecular mechanisms underlying these processes in IPF remain incompletely understood. We investigated the possible implication of aberrant overexpression and activity of histone deacetylases (HDACs) in IPF. METHODS: We analysed lung tissues from patients with sporadic IPF (n=26) and non-diseased control lungs (n=16) for expression of class I and II HDACs. Primary IPF fibroblasts were treated with HDAC inhibitors (HDACi) LBH589 or valproic acid (VPA). RESULTS: Compared to control lungs, protein levels of class I (HDAC1, HDAC2, HDAC3, HDAC8) and class II HDACs (HDAC4, HDAC 5, HDAC 7, HDAC 9) were significantly elevated in IPF lungs. Using immunohistochemistry, strong induction of nearly all HDAC enzymes was observed in myofibroblasts of fibroblast foci and in abnormal bronchiolar basal cells at sites of aberrant re-epithelialisation in IPF lungs, but not in controls. Treatment of primary IPF fibroblasts with the pan-HDACi LBH589 resulted in significantly reduced expression of genes associated with ECM synthesis, proliferation and cell survival, as well as in suppression of HDAC7, and was paralleled by induction of endoplasmic reticulum stress and apoptosis. The profibrotic and apoptosis-resistant phenotype of IPF fibroblasts was also partly attenuated by the class I HDACi VPA. CONCLUSIONS: Aberrant overexpression of HDACs in basal cells of IPF lungs may contribute to the bronchiolisation process in this disease. Similarly, generation and apoptosis resistance of IPF fibroblasts are mediated by enhanced activity of HDAC enzymes. Therefore, pan-HDAC inhibition by LBH589 may present a novel therapeutic option for patients with IPF.


Subject(s)
Gene Expression Regulation , Histone Deacetylases/genetics , Idiopathic Pulmonary Fibrosis/genetics , RNA/genetics , Cells, Cultured , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Histone Deacetylase 2/biosynthesis , Histone Deacetylase 2/genetics , Histone Deacetylases/biosynthesis , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Male , Middle Aged , Real-Time Polymerase Chain Reaction
4.
Chemphyschem ; 14(10): 2237-50, 2013 Jul 22.
Article in English | MEDLINE | ID: mdl-23616388

ABSTRACT

The validity and accuracy of our new numerical approach implemented in KISSA-1D software when applied to a theoretical study of different types of electrochemiluminescence (ECL) is established by comparison with existing analytical solutions and others specifically derived in this work, as well as with independent numerical solutions obtained by using commercial software. The efficiency and comprehensiveness of this approach are illustrated by using a representative series of published ECL reaction schemes taken as typical case studies when ECL is generated by a single electrode under amperometric or voltammetric conditions, even when rate constants used in the simulations far exceed any of their realistic experimental limits.


Subject(s)
Electrochemical Techniques , Luminescence , Software , Electrodes
5.
Foods ; 12(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36900445

ABSTRACT

Concerns regarding the role of antimicrobial resistance (AMR) in disease outbreaks are growing due to the excessive use of antibiotics. Moreover, consumers are demanding food products that are minimally processed and produced in a sustainable way, without the use of chemical preservatives or antibiotics. Grape seed extract (GSE) is isolated from wine industry waste and is an interesting source of natural antimicrobials, especially when aiming to increase sustainable processing. The aim of this study was to obtain a systematic understanding of the microbial inactivation efficacy/potential of GSE against Listeria monocytogenes (Gram-positive), Escherichia coli and Salmonella Typhimurium (Gram-negative) in an in vitro model system. More specifically, for L. monocytogenes, the effects of the initial inoculum concentration, bacterial growth phase and absence of the environmental stress response regulon (SigB) on the GSE microbial inactivation potential were investigated. In general, GSE was found to be highly effective at inactivating L. monocytogenes, with higher inactivation achieved for higher GSE concentrations and lower initial inoculum levels. Generally, stationary phase cells were more resistant/tolerant to GSE as compared to exponential phase cells (for the same inoculum level). Additionally, SigB appears to play an important role in the resistance of L. monocytogenes to GSE. The Gram-negative bacteria under study (E. coli and S. Typhimurium) were less susceptible to GSE as compared to L. monocytogenes. Our findings provide a quantitative and mechanistic understanding of the impact of GSE on the microbial dynamics of foodborne pathogens, assisting in the more systematic design of natural antimicrobial-based strategies for sustainable food safety.

6.
Sci Rep ; 13(1): 21811, 2023 12 09.
Article in English | MEDLINE | ID: mdl-38071223

ABSTRACT

The aim of the current study is to develop and characterise novel complex multi-phase in vitro 3D models, for advanced microbiological studies. More specifically, we enriched our previously developed bi-phasic polysaccharide (Xanthan Gum)/protein (Whey Protein) 3D model with a fat phase (Sunflower Oil) at various concentrations, i.e., 10%, 20%, 40% and 60% (v/v), for better mimicry of the structural and biochemical composition of real food products. Rheological, textural, and physicochemical analysis as well as advanced microscopy imaging (including spatial mapping of the fat droplet distribution) of the new tri-phasic 3D models revealed their similarity to industrial food products (especially cheese products). Furthermore, microbial growth experiments of foodborne bacteria, i.e., Listeria monocytogenes, Escherichia coli, Pseudomonas aeruginosa and Lactococcus lactis on the surface of the 3D models revealed very interesting results, regarding the growth dynamics and distribution of cells at colony level. More specifically, the size of the colonies formed on the surface of the 3D models, increased substantially for increasing fat concentrations, especially in mid- and late-exponential growth phases. Furthermore, colonies formed in proximity to fat were substantially larger as compared to the ones that were located far from the fat phase of the models. In terms of growth location, the majority of colonies were located on the protein/polysaccharide phase of the 3D models. All those differences at microscopic level, that can directly affect the bacterial response to decontamination treatments, were not captured by the macroscopic kinetics (growth dynamics), which were unaffected from changes in fat concentration. Our findings demonstrate the importance of developing structurally and biochemically complex 3D in vitro models (for closer proximity to industrial products), as well as the necessity of conducting multi-level microbial analyses, to better understand and predict the bacterial behaviour in relation to their biochemical and structural environment. Such studies in advanced 3D environments can assist a better/more accurate design of industrial antimicrobial processes, ultimately, improving food safety.


Subject(s)
Cheese , Listeria monocytogenes , Nisin , Colony Count, Microbial , Cheese/microbiology , Food Microbiology
7.
Int J Food Microbiol ; 406: 110395, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-37734280

ABSTRACT

The demand for products that are minimally processed and produced in a sustainable way, without the use of chemical preservatives or antibiotics have increased over the last years. Novel non-thermal technologies such as cold atmospheric plasma (CAP) and natural antimicrobials such as grape seed extract (GSE) are attractive alternatives to conventional food decontamination methods as they can meet the above demands. The aim of this study was to investigate the microbial inactivation potential of GSE, CAP (in this case, a remote air plasma with an ozone-dominated RONS output) and their combination against L. monocytogenes on five different 3D in vitro models of varying rheological, structural, and biochemical composition. More specifically, we studied the microbial dynamics, as affected by 1 % (w/v) GSE, CAP or their combination, in three monophasic Xanthan Gum (XG) based 3D models of relatively low viscosity (1.5 %, 2.5 % and 5 % w/v XG) and in a biphasic XG/Whey Protein (WPI) and a triphasic XG/WPI/fat model. A significant microbial inactivation (comparable to liquid broth) was achieved in presence of GSE on the surface of all monophasic models regardless of their viscosity. In contrast, the GSE antimicrobial effect was diminished in the multiphasic systems, resulting to only a slight disturbance of the microbial growth. In contrast, CAP showed better antimicrobial potential on the surface of the complex multiphasic models as compared to the monophasic models. When combined, in a hurdle approach, GSE/CAP showed promising microbial inactivation potential in all our 3D models, but less microbial inactivation in the structurally and biochemically complex multiphasic models, with respect to the monophasic models. The level of inactivation also depended on the duration of the exposure to GSE. Our results contribute towards understanding the antimicrobial efficacy of GSE, CAP and their combination as affected by robustly controlled changes of rheological and structural properties and of the biochemical composition of the environment in which bacteria grow. Therefore, our results contribute to the development of sustainable food safety strategies.


Subject(s)
Grape Seed Extract , Listeria monocytogenes , Plasma Gases , Grape Seed Extract/pharmacology , Food Preservation/methods , Food Microbiology , Plasma Gases/pharmacology , Colony Count, Microbial , Anti-Bacterial Agents/pharmacology
8.
Anal Chem ; 84(6): 2792-8, 2012 Mar 20.
Article in English | MEDLINE | ID: mdl-22379947

ABSTRACT

In order to successfully model an electrochemical reaction mechanism one must ensure that all the equations, including initial conditions, satisfy the pertinent thermodynamic and kinetic relationships. Failure to do so may lead to invalid results even if they are mathematically correct. This fact has been previously emphasized (Luo, W.; Feldberg, S. W.; Rudolph, M. J. Electroanal. Chem. 1994, 368, 109 - 113; Rudolph, M. Digital Simulation in Electrochemistry. In Physical Electrochemistry; Rubenstein, I., Ed.; Marcel Dekker: New York, 1995; Chapter 3) and existing computer software for electrochemical simulations, such as DigiSim (Rudolph, M.; Reddy, D. P.; Feldberg, S. W. Anal. Chem. 1994, 66, 589A; http://www.basinc.com/products/ec/digisim/), offer the option of enforcing the so-called "pre-equilibration" which evaluates thermodynamic concentrations of all species prior to beginning a voltammetric scan. Although this approach allows setting consistent thermodynamic values it may result in a nonrealistic initial concentrations set because it corresponds to the whole solution status at infinite time for infinite kinetic constants. However, the perturbation created by the working electrode poised at its rest potential is necessarily limited by the size of the electrode, reaction kinetics, and duration of the rest period. Furthermore, natural convection limits even more the importance of the perturbation. This is analyzed theoretically through comparison of simulation results by DigiSim and KISSA-1D software for certain common electrochemical mechanisms in order to illustrate the importance of correct prediction of initial concentrations.

9.
Chemphyschem ; 13(3): 845-59, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22344796

ABSTRACT

A new simulation algorithm is presented for describing the dynamics of diffusion reactions at the most common microelectrode 1D (planar, cylindrical, spherical) and 2D geometries (band, disk) for electrochemical mechanisms of any complexity and involving fast homogeneous reactions of any kind. A series of typical electrochemical mechanisms that create the most severe simulation difficulties is used to establish the exceptional performance and accuracy of this algorithm, which stem from the combination of (quasi)conformal transformation of space and a new method for auto-adaptive grid compression.

10.
Biochim Biophys Acta Mol Basis Dis ; 1868(1): 166286, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34624498

ABSTRACT

Chronic stress leads to post-traumatic stress disorder (PTSD) and metabolic disorders including fatty liver. We hypothesized that stress-induced molecular mechanisms alter energy metabolism, thereby promoting hepatic lipid accumulation even after a stress-free recovery period. In this context, we investigated fibroblast growth factor-21 (FGF21) as protective for energy and glucose homeostasis. FGF21 knockout mice (B6.129S6(SJL)-Fgf21tm1.2Djm; FGF21KO) and control mice (C57BL6; WT) were subjected to chronic variable stress. Mice were examined directly after acute intervention (Cvs) and long-term after 3 months of recovery (3mCvs). In WT, Cvs reduced insulin sensitivity and hepatic lipid accumulation, whilst fatty acid uptake increased. FGF21KO mice responded to Cvs with improved glucose tolerance, insulin resistance but liver triglycerides and plasma lipids were unaltered. Hepatic gene expression was specifically altered by genotype and stress e.g. by PPARa and SREBP-1 regulated genes. The stress-induced alteration of hepatic metabolism persisted after stress recovery. In hepatocytes at 3mCvs, differential gene regulation and secreted proteins indicated a genotype specific progression of liver dysfunction. Overall, at 3mCvs FGF21 was involved in maintaining mitochondrial activity, attenuating de novo lipogenesis, increased fatty acid uptake and histone acetyltransferase activity. Glucocorticoid release and binding to the FGF21 promoter may contribute to prolonged FGF21 release and protection against hepatic lipid accumulation. In conclusion, we showed that stress favors fatty liver disease and FGF21 protected against hepatic lipid accumulation after previous chronic stress loading by i) restored physiological function, ii) modulated gene expression via DNA-modifying enzymes, and iii) maintained energy metabolism.


Subject(s)
Energy Metabolism/genetics , Fatty Liver/genetics , Fibroblast Growth Factors/genetics , Stress Disorders, Post-Traumatic/genetics , Animals , Fatty Liver/metabolism , Fatty Liver/pathology , Genotype , Glucose/metabolism , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Lipid Metabolism/genetics , Lipids/genetics , Liver/metabolism , Liver/pathology , Mice , Mice, Knockout , PPAR alpha/genetics , Sterol Regulatory Element Binding Protein 1/genetics , Stress Disorders, Post-Traumatic/metabolism , Stress Disorders, Post-Traumatic/pathology
11.
Nat Commun ; 13(1): 4352, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35896539

ABSTRACT

Obesity is a pre-disposing condition for chronic obstructive pulmonary disease, asthma, and pulmonary arterial hypertension. Accumulating evidence suggests that metabolic influences during development can determine chronic lung diseases (CLD). We demonstrate that maternal obesity causes early metabolic disorder in the offspring. Here, interleukin-6 induced bronchial and microvascular smooth muscle cell (SMC) hyperproliferation and increased airway and pulmonary vascular resistance. The key anti-proliferative transcription factor FoxO1 was inactivated via nuclear exclusion. These findings were confirmed using primary SMC treated with interleukin-6 and pharmacological FoxO1 inhibition as well as genetic FoxO1 ablation and constitutive activation. In vivo, we reproduced the structural and functional alterations in offspring of obese dams via the SMC-specific ablation of FoxO1. The reconstitution of FoxO1 using IL-6-deficient mice and pharmacological treatment did not protect against metabolic disorder but prevented SMC hyperproliferation. In human observational studies, childhood obesity was associated with reduced forced expiratory volume in 1 s/forced vital capacity ratio Z-score (used as proxy for lung function) and asthma. We conclude that the interleukin-6-FoxO1 pathway in SMC is a molecular mechanism by which perinatal obesity programs the bronchial and vascular structure and function, thereby driving CLD development. Thus, FoxO1 reconstitution provides a potential therapeutic option for preventing this metabolic programming of CLD.


Subject(s)
Asthma , Hypertension, Pulmonary , Pediatric Obesity , Animals , Asthma/metabolism , Child , Female , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Humans , Hypertension, Pulmonary/genetics , Interleukin-6/metabolism , Mice , Myocytes, Smooth Muscle/metabolism , Pediatric Obesity/complications , Pediatric Obesity/metabolism , Pregnancy
12.
Proc Math Phys Eng Sci ; 477(2247): 20200855, 2021 Mar.
Article in English | MEDLINE | ID: mdl-35153550

ABSTRACT

The year 2020 has seen the emergence of a global pandemic as a result of the disease COVID-19. This report reviews knowledge of the transmission of COVID-19 indoors, examines the evidence for mitigating measures, and considers the implications for wintertime with a focus on ventilation.

13.
Mol Metab ; 42: 101062, 2020 12.
Article in English | MEDLINE | ID: mdl-32771698

ABSTRACT

OBJECTIVE: Physical exercise training is associated with increased glucose uptake in skeletal muscle and improved glycemic control. HDAC5, a class IIa histone deacetylase, has been shown to regulate transcription of the insulin-responsive glucose transporter GLUT4 in cultured muscle cells. In this study, we analyzed the contribution of HDAC5 to the transcriptional network in muscle and the beneficial effect of muscle contraction and regular exercise on glucose metabolism. METHODS: HDAC5 knockout mice (KO) and wild-type (WT) littermates were trained for 8 weeks on treadmills, metabolically phenotyped, and compared to sedentary controls. Hdac5-deficient skeletal muscle and cultured Hdac5-knockdown (KD) C2C12 myotubes were utilized for studies of gene expression and glucose metabolism. Chromatin immunoprecipitation (ChIP) studies were conducted to analyze Il6 promoter activity using H3K9ac and HDAC5 antibodies. RESULTS: Global transcriptome analysis of Hdac5 KO gastrocnemius muscle demonstrated activation of the IL-6 signaling pathway. Accordingly, knockdown of Hdac5 in C2C12 myotubes led to higher expression and secretion of IL-6 with enhanced insulin-stimulated activation of AKT that was reversed by Il6 knockdown. Moreover, Hdac5-deficient myotubes exhibited enhanced glucose uptake, glycogen synthesis, and elevated expression levels of the glucose transporter GLUT4. Transcription of Il6 was further enhanced by electrical pulse stimulation in Hdac5-deficient C2C12 myotubes. ChIP identified a ∼1 kb fragment of the Il6 promoter that interacts with HDAC5 and demonstrated increased activation-associated histone marker AcH3K9 in Hdac5-deficient muscle cells. Exercise intervention of HDAC5 KO mice resulted in improved systemic glucose tolerance as compared to WT controls. CONCLUSIONS: We identified HDAC5 as a negative epigenetic regulator of IL-6 synthesis and release in skeletal muscle. HDAC5 may exert beneficial effects through two different mechanisms, transcriptional control of genes required for glucose disposal and utilization, and HDAC5-dependent IL-6 signaling cross-talk to improve glucose uptake in muscle in response to exercise.


Subject(s)
Histone Deacetylases/metabolism , Insulin/metabolism , Interleukin-6/metabolism , Animals , Cell Line , Gene Expression/genetics , Glucose/metabolism , Histone Deacetylases/genetics , Interleukin-6/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Contraction/physiology , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Phosphorylation , Physical Conditioning, Animal/methods , Promoter Regions, Genetic/genetics , Signal Transduction/genetics
14.
Anal Chem ; 81(18): 7667-76, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19697937

ABSTRACT

In this article, the numerical approach for flow profile reconstruction in a microfluidic channel equipped with band microelectrodes introduced previously by the authors, based on transient currents, is extended to the exclusive use of steady-state currents. It is shown that, although the currents obey steady state, the flow velocity profile in the channel may be reconstructed rapidly with a high accuracy, provided a sufficient number of electrodes performing under steady state are considered. The present theory demonstrates how the electrode widths and sizes of gaps separating them can be optimized to achieve better performance of the method. This approach has been evaluated theoretically for band microelectrode arrays embedded into one wall of a rectangular channel consisting of three, four, or five electrodes, all of which are operated in the generator mode. The results prove that the proposed approach is able to accurately recover the shape of the flow profile in a wide range of Peclet numbers and flow types ranging from the classical parabolic Poiseuille flow to constant electro-osmotic-type flow.

15.
Anal Chem ; 81(20): 8545-56, 2009 Oct 15.
Article in English | MEDLINE | ID: mdl-19761227

ABSTRACT

This article extends our previous works (Amatore, C.; Oleinick, A.; Svir, I. Anal. Chem. 2008, 80, 7947-7956; 7957-7963.) about the effects of resistive and capacitive distortions in voltammetry at disk microelectrodes. The particular case of voltammetry of a self-assembled monolayer carrying one redox site per molecule is investigated here. In addition, the effect of an uneven distribution of the effective electrochemical potential on the possibility of electron hopping (EH) contributions is examined. An original model of EH has been developed considering both diffusion-type (i.e., related to concentration gradients) and migration-type (i.e., imposed by an uneven distribution of the electrical potential due to an ohmic drop and capacitance charging) contributions. This predicts that as soon as the system performs out of thermodynamic equilibrium and provided that the EH rate constants are not too small the system tends to re-establish its out-of-equilibrium state through EH. Hence, EH somewhat tries to compensate the voltammetric distortions that would be enforced by the uneven distribution of the electrochemical driving force incurred by the system due to an ohmic drop and capacitive charging. However, this rigorous analysis established that, though EH may be effective under specific circumstances particularly near the electrode edge, its overall influence on voltammetric waves remains negligible for any realistic experimental situation.

16.
Chemphyschem ; 10(9-10): 1593-602, 2009 Jul 13.
Article in English | MEDLINE | ID: mdl-19507203

ABSTRACT

In this work, we illustrate two approaches to the simulation of surface diffusion over a sphere coupled with the formation of a cluster by reactive particles as a paradigm of a wide variety of problems occurring in many areas of nanosciences and biology. The problem is treated using a Brownian motion approach and a numerical solution of the corresponding continuous Fick's laws of diffusion. While being computationally more expensive, the Brownian motion approach allows one to consider a wider range of situations, particularly those corresponding to relatively high concentrations of diffusing particles and the ensuing problem of particle overlap when they are ascribed finite sizes.

17.
Chemphyschem ; 10(9-10): 1586-92, 2009 Jul 13.
Article in English | MEDLINE | ID: mdl-19475636

ABSTRACT

Breaking of symmetry is often required in biology in order to produce a specific function. In this work we address the problem of protein diffusion over a spherical vesicle surface towards one pole of the vesicle in order to produce ultimately an active protein cluster performing a specific biological function. Such a process is, for example, prerequisite for the assembling of proteins which then cooperatively catalyze the polymerization of actin monomers to sustain the growth of actin tails as occurs in natural vesicles such as those contained in Xenopus eggs. By this process such vesicles may propel themselves within the cell by the principle of action-reaction. In this work the physicochemical treatment of diffusion of large biomolecules within a cellular membrane is extended to encompass the case when proteins may be transiently poised by corral-like structures partitioning the membrane as has been recently documented in the literature. In such case the exchange of proteins between adjacent corrals occurs by energy-gated transitions instead of classical Brownian motion, yet the present analysis shows that long-range movements of the biomolecules may still be described by a classical diffusion law though the diffusion coefficient has then a different physical meaning. Such a model explains why otherwise classical diffusion of proteins may give rise to too small diffusion coefficients compared to predictions based on the protein dimension. This model is implemented to examine the rate of proteins clustering at one pole of a spherical vesicle and its outcome is discussed in relevance to the mechanism of actin comet tails growth.


Subject(s)
Actins/chemistry , Cell Membrane/chemistry , Actins/metabolism , Algorithms , Animals , Cell Membrane/metabolism , Diffusion , Kinetics , Ovum , Xenopus laevis/metabolism
18.
J Mol Med (Berl) ; 97(7): 973-990, 2019 07.
Article in English | MEDLINE | ID: mdl-31025089

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by type-II alveolar epithelial cell (AECII) injury and fibroblast hyperproliferation. Severe AECII endoplasmic reticulum (ER) stress is thought to underlie IPF, but is yet incompletely understood. We studied the regulation of C/EBP homologous protein (CHOP), a proapoptotic ER-stress-related transcription factor (TF) in AECII-like cells. Interestingly, single or combined overexpression of the active ER stress transducers activating transcription factor-4 (Atf4) and activating transcription factor-6 (p50Atf6) or spliced x-box-binding protein-1 (sXbp1) in MLE12 cells did not result in a substantial Chop induction, as compared to the ER stress inducer thapsigargin. Employing reporter gene assays of distinct CHOP promoter fragments, we could identify that, next to the conventional amino acid (AARE) and ER stress response elements (ERSE) within the CHOP promoter, activator protein-1 (AP-1) and c-Ets-1 TF binding sites are necessary for CHOP induction. Serial deletion and mutation analyses revealed that both AP-1 and c-Ets-1 motifs act in concert to induce CHOP expression. In agreement, CHOP promoter activity was greatly enhanced upon combined versus single overexpression of AP-1 and c-Ets-1. Moreover, combined overexpression of AP-1 and c-Ets-1 in MLE12 cells alone in the absence of any other ER stress inducer was sufficient to induce Chop protein expression. Further, AP-1 and c-Ets-1 were upregulated in AECII under ER stress conditions and in human IPF. Finally, Chop overexpression in vitro resulted in AECII apoptosis, lung fibroblast proliferation, and collagen-I production. We propose that CHOP activation by AP-1 and c-Ets-1 plays a key role in AECII maladaptive ER stress responses and consecutive fibrosis, offering new therapeutic prospects in IPF. KEY MESSAGES: Overexpression of active ER stress sensors Atf4, Atf6, and Xbp1 does not induce Chop. AP-1 and c-Ets-1 TFs are necessary for induction of the ER stress factor Chop. AP-1 and c-Ets-1 alone induce Chop expression in the absence of any ER stress inducers. AP-1 and c-Ets-1 are induced in AECII under ER stress conditions and in human IPF. Chop expression alone triggers AECII apoptosis and consecutive profibrotic responses.


Subject(s)
Alveolar Epithelial Cells/metabolism , Endoplasmic Reticulum Stress , Transcription Factor CHOP/metabolism , A549 Cells , Animals , Apoptosis , Binding Sites , Female , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Middle Aged , Promoter Regions, Genetic/genetics , Signal Transduction , Up-Regulation/genetics
19.
Anal Chem ; 80(9): 3229-43, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18366191

ABSTRACT

The complex problem of diffusion-reaction inside of bundles of nanopores assembled into microspherical particles is investigated theoretically based on the numerical solutions of the physicochemical equations that describe the kinetics and the thermodynamics of the phenomena taking place. These theoretical results enable the delineation of the main factors that control the system reactivity and examination of their thermodynamic and kinetic effects to afford quantitative predictions for the optimization of the particles' dimensional characteristics for a targeted application. The validity and usefulness of the theoretical approach disclosed here are established by the presentation of the complete analysis of the performance of thiol-functionalized microspheres aimed for sequestration of Hg(II) ions from solutions to be remediated. This allows the comparison of the microparticles' performance at two different pH (2 and 4) and the rationalization of the observed changes in terms of the main microscopic parameters that define the system.

20.
J Clin Invest ; 128(1): 517-530, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29227283

ABSTRACT

SHARPIN, an adaptor for the linear ubiquitin chain assembly complex (LUBAC), plays important roles in NF-κB signaling and inflammation. Here, we have demonstrated a LUBAC-independent role for SHARPIN in regulating melanoma growth. We observed that SHARPIN interacted with PRMT5, a type II protein arginine methyltransferase, and increased its multiprotein complex and methyltransferase activity. Activated PRMT5 controlled the expression of the transcription factors SOX10 and MITF by SHARPIN-dependent arginine dimethylation and inhibition of the transcriptional corepressor SKI. Activation of PRMT5 by SHARPIN counteracted PRMT5 inhibition by methylthioadenosine, a substrate of methylthioadenosine phosphorylase, which is codeleted with cyclin-dependent kinase inhibitor 2A (CDKN2A) in approximately 15% of human cancers. Collectively, we identified a LUBAC-independent role for SHARPIN in enhancing PRMT5 activity that contributes to melanomagenesis through the SKI/SOX10 regulatory axis.


Subject(s)
Melanoma/metabolism , Neoplasm Proteins/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Ubiquitins/metabolism , Cell Line, Tumor , HEK293 Cells , Humans , Melanoma/genetics , Melanoma/pathology , Neoplasm Proteins/genetics , Protein-Arginine N-Methyltransferases/genetics , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism , Ubiquitins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL