Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Behav Brain Res ; 476: 115244, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39241835

ABSTRACT

Head trauma often impairs cognitive processes mediated within the prefrontal cortex (PFC), leading to impaired decision making and risk-taking behavior. Mild traumatic brain injury (mTBI) accounts for approximately 80 % of reported head injury cases. Most neurological symptoms of a single mTBI are transient; however, growing evidence suggests that repeated mTBI (rmTBI) results in more severe impairments that worsen with each subsequent injury. Although mTBI-induced disruption of risk/reward decision making has been characterized, the potential for rmTBI to exacerbate these effects and the neural mechanisms involved are unknown. Catecholamine neurotransmitters, dopamine (DA) and norepinephrine (NE), modulate PFC-mediated functions. Imbalances in catecholamine function have been associated with TBI and may underlie aberrant decision making. We used a closed head-controlled cortical impact (CH-CCI) model in rats to evaluate the effects of rmTBI on performance of a probabilistic discounting task of risk/reward decision making behavior and expression levels of catecholamine regulatory proteins within the PFC. RmTBI produced transient increases in risky choice preference in both male and female rats, with these effects persisting longer in females. Additionally, rmTBI increased expression of the catecholamine synthetic enzyme, tyrosine hydroxylase (TH), within the orbitofrontal (OFC) region of the PFC in females only. These results suggest females are more susceptible to rmTBI-induced disruption of risk/reward decision making behavior and dysregulation of catecholamine synthesis within the OFC. Together, using the CH-CCI model of rodent rmTBI to evaluate the effects of multiple insults on risk-taking behavior and PFC catecholamine regulation begins to differentiate how mTBI occurrences affect neuropathological outcomes across different sexes.

2.
Behav Brain Res ; 467: 115002, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38636779

ABSTRACT

Mild traumatic brain injury (mTBI) disrupts cognitive processes that influence risk taking behavior. Little is known regarding the effects of repetitive mild injury (rmTBI) or whether these outcomes are sex specific. Risk/reward decision making is mediated by the prefrontal cortex (PFC), which is densely innervated by catecholaminergic fibers. Aberrant PFC catecholamine activity has been documented following TBI and may underlie TBI-induced risky behavior. The present study characterized the effects of rmTBI on risk/reward decision making behavior and catecholamine transmitter regulatory proteins within the PFC. Rats were exposed to sham, single (smTBI), or three closed-head controlled cortical impact (CH-CCI) injuries and assessed for injury-induced effects on risk/reward decision making using a probabilistic discounting task (PDT). In the first week post-final surgery, mTBI increased risky choice preference. By the fourth week, males exhibited increased latencies to make risky choices following rmTBI, demonstrating a delayed effect on processing speed. When levels of tyrosine hydroxylase (TH) and the norepinephrine reuptake transporter (NET) were measured within subregions of the PFC, females exhibited dramatic increases of TH levels within the orbitofrontal cortex (OFC) following smTBI. However, both males and females demonstrated reduced levels of OFC NET following rmTBI. These results indicate the OFC is susceptible to catecholamine instability after rmTBI and suggests that not all areas of the PFC contribute equally to TBI-induced imbalances. Overall, the CH-CCI model of rmTBI has revealed time-dependent and sex-specific changes in risk/reward decision making and catecholamine regulation following repetitive mild head injuries.


Subject(s)
Brain Concussion , Catecholamines , Decision Making , Prefrontal Cortex , Reward , Risk-Taking , Animals , Male , Female , Decision Making/physiology , Catecholamines/metabolism , Prefrontal Cortex/metabolism , Brain Concussion/metabolism , Brain Concussion/physiopathology , Tyrosine 3-Monooxygenase/metabolism , Rats, Sprague-Dawley , Rats , Disease Models, Animal , Norepinephrine Plasma Membrane Transport Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL