ABSTRACT
Live bacterial therapeutics (LBTs) could reverse diseases by engrafting in the gut and providing persistent beneficial functions in the host. However, attempts to functionally manipulate the gut microbiome of conventionally raised (CR) hosts have been unsuccessful because engineered microbial organisms (i.e., chassis) have difficulty in colonizing the hostile luminal environment. In this proof-of-concept study, we use native bacteria as chassis for transgene delivery to impact CR host physiology. Native Escherichia coli bacteria isolated from the stool cultures of CR mice were modified to express functional genes. The reintroduction of these strains induces perpetual engraftment in the intestine. In addition, engineered native E. coli can induce functional changes that affect physiology of and reverse pathology in CR hosts months after administration. Thus, using native bacteria as chassis to "knock in" specific functions allows mechanistic studies of specific microbial activities in the microbiome of CR hosts and enables LBT with curative intent.
Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Bacteria/genetics , Escherichia coli/genetics , Gastrointestinal Microbiome/physiology , Mice , TransgenesABSTRACT
Cancer-microbe associations have been explored for centuries, but cancer-associated fungi have rarely been examined. Here, we comprehensively characterize the cancer mycobiome within 17,401 patient tissue, blood, and plasma samples across 35 cancer types in four independent cohorts. We report fungal DNA and cells at low abundances across many major human cancers, with differences in community compositions that differ among cancer types, even when accounting for technical background. Fungal histological staining of tissue microarrays supported intratumoral presence and frequent spatial association with cancer cells and macrophages. Comparing intratumoral fungal communities with matched bacteriomes and immunomes revealed co-occurring bi-domain ecologies, often with permissive, rather than competitive, microenvironments and distinct immune responses. Clinically focused assessments suggested prognostic and diagnostic capacities of the tissue and plasma mycobiomes, even in stage I cancers, and synergistic predictive performance with bacteriomes.
Subject(s)
Mycobiome , Neoplasms , DNA, Fungal/analysis , Fungi/genetics , HumansABSTRACT
The highly transmissible B.1.1.7 variant of SARS-CoV-2, first identified in the United Kingdom, has gained a foothold across the world. Using S gene target failure (SGTF) and SARS-CoV-2 genomic sequencing, we investigated the prevalence and dynamics of this variant in the United States (US), tracking it back to its early emergence. We found that, while the fraction of B.1.1.7 varied by state, the variant increased at a logistic rate with a roughly weekly doubling rate and an increased transmission of 40%-50%. We revealed several independent introductions of B.1.1.7 into the US as early as late November 2020, with community transmission spreading it to most states within months. We show that the US is on a similar trajectory as other countries where B.1.1.7 became dominant, requiring immediate and decisive action to minimize COVID-19 morbidity and mortality.
Subject(s)
COVID-19 , Models, Biological , SARS-CoV-2 , COVID-19/genetics , COVID-19/mortality , COVID-19/transmission , Female , Humans , Male , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , United States/epidemiologyABSTRACT
The emergence of the COVID-19 epidemic in the United States (U.S.) went largely undetected due to inadequate testing. New Orleans experienced one of the earliest and fastest accelerating outbreaks, coinciding with Mardi Gras. To gain insight into the emergence of SARS-CoV-2 in the U.S. and how large-scale events accelerate transmission, we sequenced SARS-CoV-2 genomes during the first wave of the COVID-19 epidemic in Louisiana. We show that SARS-CoV-2 in Louisiana had limited diversity compared to other U.S. states and that one introduction of SARS-CoV-2 led to almost all of the early transmission in Louisiana. By analyzing mobility and genomic data, we show that SARS-CoV-2 was already present in New Orleans before Mardi Gras, and the festival dramatically accelerated transmission. Our study provides an understanding of how superspreading during large-scale events played a key role during the early outbreak in the U.S. and can greatly accelerate epidemics.
Subject(s)
COVID-19/epidemiology , Epidemics , SARS-CoV-2/physiology , COVID-19/transmission , Databases as Topic , Disease Outbreaks , Humans , Louisiana/epidemiology , Phylogeny , Risk Factors , SARS-CoV-2/classification , Texas , Travel , United States/epidemiologyABSTRACT
Staphylococcus aureus bacteremia (SaB) causes significant disease in humans, carrying mortality rates of â¼25%. The ability to rapidly predict SaB patient responses and guide personalized treatment regimens could reduce mortality. Here, we present a resource of SaB prognostic biomarkers. Integrating proteomic and metabolomic techniques enabled the identification of >10,000 features from >200 serum samples collected upon clinical presentation. We interrogated the complexity of serum using multiple computational strategies, which provided a comprehensive view of the early host response to infection. Our biomarkers exceed the predictive capabilities of those previously reported, particularly when used in combination. Last, we validated the biological contribution of mortality-associated pathways using a murine model of SaB. Our findings represent a starting point for the development of a prognostic test for identifying high-risk patients at a time early enough to trigger intensive monitoring and interventions.
Subject(s)
Bacteremia/blood , Bacteremia/mortality , Staphylococcal Infections/blood , Staphylococcal Infections/mortality , Staphylococcus aureus/pathogenicity , Animals , Bacteremia/metabolism , Biomarkers/blood , Biomarkers/metabolism , Disease Models, Animal , Female , Humans , Male , Metabolomics/methods , Mice , Middle Aged , Prognosis , Proteomics/methods , Risk Factors , Staphylococcal Infections/metabolismABSTRACT
A mysterious feature of Crohn's disease (CD) is the extra-intestinal manifestation of "creeping fat" (CrF), defined as expansion of mesenteric adipose tissue around the inflamed and fibrotic intestine. In the current study, we explore whether microbial translocation in CD serves as a central cue for CrF development. We discovered a subset of mucosal-associated gut bacteria that consistently translocated and remained viable in CrF in CD ileal surgical resections, and identified Clostridium innocuum as a signature of this consortium with strain variation between mucosal and adipose isolates, suggesting preference for lipid-rich environments. Single-cell RNA sequencing characterized CrF as both pro-fibrotic and pro-adipogenic with a rich milieu of activated immune cells responding to microbial stimuli, which we confirm in gnotobiotic mice colonized with C. innocuum. Ex vivo validation of expression patterns suggests C. innocuum stimulates tissue remodeling via M2 macrophages, leading to an adipose tissue barrier that serves to prevent systemic dissemination of bacteria.
Subject(s)
Adipose Tissue/microbiology , Bacterial Translocation , Gastrointestinal Microbiome , Mesentery/microbiology , Adipose Tissue/pathology , Animals , Biodiversity , Biomarkers/metabolism , Cell Polarity , Cells, Cultured , Colitis, Ulcerative/pathology , Crohn Disease/microbiology , Crohn Disease/pathology , Gastrointestinal Microbiome/genetics , Gene Expression Regulation , Germ-Free Life , Humans , Ileum/microbiology , Ileum/pathology , Lipopolysaccharides/metabolism , Macrophages/metabolism , Metagenome , Metagenomics , Mice , Mice, Inbred C57BL , Phenotype , RNA, Ribosomal, 16S/genetics , Stem Cells/metabolismABSTRACT
Increased levels of intestinal bile acids (BAs) are a risk factor for colorectal cancer (CRC). Here, we show that the convergence of dietary factors (high-fat diet) and dysregulated WNT signaling (APC mutation) alters BA profiles to drive malignant transformations in Lgr5-expressing (Lgr5+) cancer stem cells and promote an adenoma-to-adenocarcinoma progression. Mechanistically, we show that BAs that antagonize intestinal farnesoid X receptor (FXR) function, including tauro-ß-muricholic acid (T-ßMCA) and deoxycholic acid (DCA), induce proliferation and DNA damage in Lgr5+ cells. Conversely, selective activation of intestinal FXR can restrict abnormal Lgr5+ cell growth and curtail CRC progression. This unexpected role for FXR in coordinating intestinal self-renewal with BA levels implicates FXR as a potential therapeutic target for CRC.
Subject(s)
Intestinal Neoplasms/metabolism , Neoplastic Stem Cells/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Bile Acids and Salts/metabolism , Cell Line , Cell Proliferation/genetics , Colorectal Neoplasms/metabolism , Deoxycholic Acid/metabolism , Gene Expression Regulation, Neoplastic/genetics , Humans , Intestinal Neoplasms/genetics , Intestines , Liver , Mice , Mice, Inbred C57BL , Neoplastic Stem Cells/physiology , Organoids/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Risk Factors , Signal Transduction , Taurocholic Acid/analogs & derivatives , Taurocholic Acid/metabolism , Wnt Signaling Pathway/genetics , Wnt Signaling Pathway/physiologyABSTRACT
Autism spectrum disorder (ASD) manifests as alterations in complex human behaviors including social communication and stereotypies. In addition to genetic risks, the gut microbiome differs between typically developing (TD) and ASD individuals, though it remains unclear whether the microbiome contributes to symptoms. We transplanted gut microbiota from human donors with ASD or TD controls into germ-free mice and reveal that colonization with ASD microbiota is sufficient to induce hallmark autistic behaviors. The brains of mice colonized with ASD microbiota display alternative splicing of ASD-relevant genes. Microbiome and metabolome profiles of mice harboring human microbiota predict that specific bacterial taxa and their metabolites modulate ASD behaviors. Indeed, treatment of an ASD mouse model with candidate microbial metabolites improves behavioral abnormalities and modulates neuronal excitability in the brain. We propose that the gut microbiota regulates behaviors in mice via production of neuroactive metabolites, suggesting that gut-brain connections contribute to the pathophysiology of ASD.
Subject(s)
Autism Spectrum Disorder/microbiology , Behavioral Symptoms/microbiology , Gastrointestinal Microbiome/physiology , Animals , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/physiopathology , Bacteria , Behavior, Animal/physiology , Brain/metabolism , Disease Models, Animal , Humans , Mice , Microbiota , Risk FactorsABSTRACT
To gain insight into the stability of the microbial communities that inhabit our skin, Oh et al., in a tour-de-force effort, map the human skin metagenomes over time. Remarkably, their data indicate that the individual, not the environment, primarily drives the composition of skin microbial communities.
Subject(s)
Friends , Metagenome , Environment , Humans , SkinABSTRACT
The intestinal microbiota influence neurodevelopment, modulate behavior, and contribute to neurological disorders. However, a functional link between gut bacteria and neurodegenerative diseases remains unexplored. Synucleinopathies are characterized by aggregation of the protein α-synuclein (αSyn), often resulting in motor dysfunction as exemplified by Parkinson's disease (PD). Using mice that overexpress αSyn, we report herein that gut microbiota are required for motor deficits, microglia activation, and αSyn pathology. Antibiotic treatment ameliorates, while microbial re-colonization promotes, pathophysiology in adult animals, suggesting that postnatal signaling between the gut and the brain modulates disease. Indeed, oral administration of specific microbial metabolites to germ-free mice promotes neuroinflammation and motor symptoms. Remarkably, colonization of αSyn-overexpressing mice with microbiota from PD-affected patients enhances physical impairments compared to microbiota transplants from healthy human donors. These findings reveal that gut bacteria regulate movement disorders in mice and suggest that alterations in the human microbiome represent a risk factor for PD.
Subject(s)
Parkinson Disease/microbiology , Parkinson Disease/pathology , Animals , Brain/pathology , Dysbiosis/pathology , Fatty Acids/metabolism , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/physiopathology , Humans , Inflammation/metabolism , Inflammation/microbiology , Inflammation/pathology , Mice , Microglia/pathology , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , alpha-Synuclein/metabolismABSTRACT
Determining the structure and phenotypic context of molecules detected in untargeted metabolomics experiments remains challenging. Here we present reverse metabolomics as a discovery strategy, whereby tandem mass spectrometry spectra acquired from newly synthesized compounds are searched for in public metabolomics datasets to uncover phenotypic associations. To demonstrate the concept, we broadly synthesized and explored multiple classes of metabolites in humans, including N-acyl amides, fatty acid esters of hydroxy fatty acids, bile acid esters and conjugated bile acids. Using repository-scale analysis1,2, we discovered that some conjugated bile acids are associated with inflammatory bowel disease (IBD). Validation using four distinct human IBD cohorts showed that cholic acids conjugated to Glu, Ile/Leu, Phe, Thr, Trp or Tyr are increased in Crohn's disease. Several of these compounds and related structures affected pathways associated with IBD, such as interferon-γ production in CD4+ T cells3 and agonism of the pregnane X receptor4. Culture of bacteria belonging to the Bifidobacterium, Clostridium and Enterococcus genera produced these bile amidates. Because searching repositories with tandem mass spectrometry spectra has only recently become possible, this reverse metabolomics approach can now be used as a general strategy to discover other molecules from human and animal ecosystems.
Subject(s)
Amides , Bile Acids and Salts , Esters , Fatty Acids , Metabolomics , Animals , Humans , Bifidobacterium/metabolism , Bile Acids and Salts/chemistry , Bile Acids and Salts/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Clostridium/metabolism , Cohort Studies , Crohn Disease/metabolism , Enterococcus/metabolism , Esters/chemistry , Esters/metabolism , Fatty Acids/chemistry , Fatty Acids/metabolism , Inflammatory Bowel Diseases/metabolism , Metabolomics/methods , Phenotype , Pregnane X Receptor/metabolism , Reproducibility of Results , Tandem Mass Spectrometry , Amides/chemistry , Amides/metabolismABSTRACT
Human microbiome research is an actively developing area of inquiry, with ramifications for our lifestyles, our interactions with microbes, and how we treat disease. Advances depend on carefully executed, controlled, and reproducible studies. Here, we provide a Primer for researchers from diverse disciplines interested in conducting microbiome research. We discuss factors to be considered in the design, execution, and data analysis of microbiome studies. These recommendations should help researchers to enter and contribute to this rapidly developing field.
Subject(s)
Microbiological Techniques , Microbiota , Animals , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Guidelines as Topic , Humans , Polymerase Chain Reaction , RibotypingABSTRACT
The human microbiome has become a recognized factor in promoting and maintaining health. We outline opportunities in interdisciplinary research, analytical rigor, standardization, and policy development for this relatively new and rapidly developing field. Advances in these aspects of the research community may in turn advance our understanding of human microbiome biology.
Subject(s)
Biomedical Research , Microbiota , Animals , Biomedical Research/methods , Biomedical Research/standards , Guidelines as Topic , Humans , Microbiological Techniques , National Institutes of Health (U.S.) , United StatesABSTRACT
Host genetics and the gut microbiome can both influence metabolic phenotypes. However, whether host genetic variation shapes the gut microbiome and interacts with it to affect host phenotype is unclear. Here, we compared microbiotas across >1,000 fecal samples obtained from the TwinsUK population, including 416 twin pairs. We identified many microbial taxa whose abundances were influenced by host genetics. The most heritable taxon, the family Christensenellaceae, formed a co-occurrence network with other heritable Bacteria and with methanogenic Archaea. Furthermore, Christensenellaceae and its partners were enriched in individuals with low body mass index (BMI). An obese-associated microbiome was amended with Christensenella minuta, a cultured member of the Christensenellaceae, and transplanted to germ-free mice. C. minuta amendment reduced weight gain and altered the microbiome of recipient mice. Our findings indicate that host genetics influence the composition of the human gut microbiome and can do so in ways that impact host metabolism.
Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Feces/microbiology , Microbiota , Animals , Bacteria/metabolism , Body Mass Index , Female , Gastrointestinal Tract/microbiology , Germ-Free Life , Humans , Male , Mice , Obesity/microbiology , Twins, Dizygotic , Twins, MonozygoticABSTRACT
To study how microbes establish themselves in a mammalian gut environment, we colonized germ-free mice with microbial communities from human, zebrafish, and termite guts, human skin and tongue, soil, and estuarine microbial mats. Bacteria from these foreign environments colonized and persisted in the mouse gut; their capacity to metabolize dietary and host carbohydrates and bile acids correlated with colonization success. Cohousing mice harboring these xenomicrobiota or a mouse cecal microbiota, along with germ-free "bystanders," revealed the success of particular bacterial taxa in invading guts with established communities and empty gut habitats. Unanticipated patterns of ecological succession were observed; for example, a soil-derived bacterium dominated even in the presence of bacteria from other gut communities (zebrafish and termite), and human-derived bacteria colonized germ-free bystander mice before mouse-derived organisms. This approach can be generalized to address a variety of mechanistic questions about succession, including succession in the context of microbiota-directed therapeutics.
Subject(s)
Bacteria/classification , Bacteria/growth & development , Gastrointestinal Tract/microbiology , Mice/microbiology , Animals , Bacteria/metabolism , Ecosystem , Estuaries , Germ-Free Life , Humans , Isoptera/microbiology , Microbial Interactions , Skin/microbiology , Soil Microbiology , Symbiosis , Tongue/microbiology , Zebrafish/microbiologyABSTRACT
Diabetes represents a spectrum of disease in which metabolic dysfunction damages multiple organ systems including liver, kidneys and peripheral nerves1,2. Although the onset and progression of these co-morbidities are linked with insulin resistance, hyperglycaemia and dyslipidaemia3-7, aberrant non-essential amino acid (NEAA) metabolism also contributes to the pathogenesis of diabetes8-10. Serine and glycine are closely related NEAAs whose levels are consistently reduced in patients with metabolic syndrome10-14, but the mechanistic drivers and downstream consequences of this metabotype remain unclear. Low systemic serine and glycine are also emerging as a hallmark of macular and peripheral nerve disorders, correlating with impaired visual acuity and peripheral neuropathy15,16. Here we demonstrate that aberrant serine homeostasis drives serine and glycine deficiencies in diabetic mice, which can be diagnosed with a serine tolerance test that quantifies serine uptake and disposal. Mimicking these metabolic alterations in young mice by dietary serine or glycine restriction together with high fat intake markedly accelerates the onset of small fibre neuropathy while reducing adiposity. Normalization of serine by dietary supplementation and mitigation of dyslipidaemia with myriocin both alleviate neuropathy in diabetic mice, linking serine-associated peripheral neuropathy to sphingolipid metabolism. These findings identify systemic serine deficiency and dyslipidaemia as novel risk factors for peripheral neuropathy that may be exploited therapeutically.
Subject(s)
Diabetes Mellitus, Experimental , Insulin , Lipid Metabolism , Peripheral Nervous System Diseases , Serine , Animals , Mice , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Glycine/metabolism , Insulin/metabolism , Peripheral Nervous System Diseases/metabolism , Serine/metabolism , Diet, High-Fat , Adiposity , Sphingolipids/metabolism , Small Fiber Neuropathy , DyslipidemiasABSTRACT
Hsaio and colleagues link gut microbes to autism spectrum disorders (ASD) in a mouse model. They show that ASD symptoms are triggered by compositional and structural shifts of microbes and associated metabolites, but symptoms are relieved by a Bacteroides fragilis probiotic. Thus probiotics may provide therapeutic strategies for neurodevelopmental disorders.
Subject(s)
Child Development Disorders, Pervasive/microbiology , Gastrointestinal Tract/microbiology , Animals , Female , HumansABSTRACT
Integration of sensory and molecular inputs from the environment shapes animal behaviour. A major site of exposure to environmental molecules is the gastrointestinal tract, in which dietary components are chemically transformed by the microbiota1 and gut-derived metabolites are disseminated to all organs, including the brain2. In mice, the gut microbiota impacts behaviour3, modulates neurotransmitter production in the gut and brain4,5, and influences brain development and myelination patterns6,7. The mechanisms that mediate the gut-brain interactions remain poorly defined, although they broadly involve humoral or neuronal connections. We previously reported that the levels of the microbial metabolite 4-ethylphenyl sulfate (4EPS) were increased in a mouse model of atypical neurodevelopment8. Here we identified biosynthetic genes from the gut microbiome that mediate the conversion of dietary tyrosine to 4-ethylphenol (4EP), and bioengineered gut bacteria to selectively produce 4EPS in mice. 4EPS entered the brain and was associated with changes in region-specific activity and functional connectivity. Gene expression signatures revealed altered oligodendrocyte function in the brain, and 4EPS impaired oligodendrocyte maturation in mice and decreased oligodendrocyte-neuron interactions in ex vivo brain cultures. Mice colonized with 4EP-producing bacteria exhibited reduced myelination of neuronal axons. Altered myelination dynamics in the brain have been associated with behavioural outcomes7,9-14. Accordingly, we observed that mice exposed to 4EPS displayed anxiety-like behaviours, and pharmacological treatments that promote oligodendrocyte differentiation prevented the behavioural effects of 4EPS. These findings reveal that a gut-derived molecule influences complex behaviours in mice through effects on oligodendrocyte function and myelin patterning in the brain.
Subject(s)
Anxiety , Gastrointestinal Microbiome , Microbiota , Animals , Anxiety/metabolism , Bacteria , Brain/metabolism , Gastrointestinal Microbiome/physiology , Mice , Mice, Inbred C57BL , Microbiota/physiology , Myelin Sheath , Phenols/metabolismABSTRACT
The human gut harbors diverse microbes that play a fundamental role in the well-being of their host. The constituents of the microbiota--bacteria, viruses, and eukaryotes--have been shown to interact with one another and with the host immune system in ways that influence the development of disease. We review these interactions and suggest that a holistic approach to studying the microbiota that goes beyond characterization of community composition and encompasses dynamic interactions between all components of the microbiota and host tissue over time will be crucial for building predictive models for diagnosis and treatment of diseases linked to imbalances in our microbiota.
Subject(s)
Gastrointestinal Tract/microbiology , Metagenome , Animals , Bacteria/classification , Gastrointestinal Tract/immunology , Gastrointestinal Tract/parasitology , Humans , Microbial Interactions , Parasites/metabolismABSTRACT
Many of the immune and metabolic changes occurring during normal pregnancy also describe metabolic syndrome. Gut microbiota can cause symptoms of metabolic syndrome in nonpregnant hosts. Here, to explore their role in pregnancy, we characterized fecal bacteria of 91 pregnant women of varying prepregnancy BMIs and gestational diabetes status and their infants. Similarities between infant-mother microbiotas increased with children's age, and the infant microbiota was unaffected by mother's health status. Gut microbiota changed dramatically from first (T1) to third (T3) trimesters, with vast expansion of diversity between mothers, an overall increase in Proteobacteria and Actinobacteria, and reduced richness. T3 stool showed strongest signs of inflammation and energy loss; however, microbiome gene repertoires were constant between trimesters. When transferred to germ-free mice, T3 microbiota induced greater adiposity and insulin insensitivity compared to T1. Our findings indicate that host-microbial interactions that impact host metabolism can occur and may be beneficial in pregnancy.