Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 314
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cancer Sci ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671582

ABSTRACT

Near-infrared photoimmunotherapy (NIR-PIT) is a new type of cancer therapy that employs antibody-IRDye700DX conjugates (AbPCs) and near-infrared (NIR) light at a wavelength of 689 nm, the excitation wavelength of IR700. Administered intravenously, injected AbPCs bind specifically to cells expressing the target antigen, whereupon NIR light exposure causes rapid, selective killing. This process induces an anticancer T cell response, leading to sustained anticancer host immune response. Programmed cell death ligand-1 (PD-L1) is a major inhibitory immune checkpoint molecule expressed in various cancers. In this study, we first assessed the efficacy of PD-L1-targeted NIR-PIT (αPD-L1-PIT) in immune-competent tumor mouse models. αPD-L1-PIT showed a significant therapeutic effect on the tumor models with high PD-L1 expression. Furthermore, αPD-L1-PIT induced an abscopal effect on distant tumors and long-term immunological memory. In contrast, αPD-L1-PIT was not as effective for tumor models with low PD-L1 expression. To improve the efficacy of PD-L1-targeted NIR-PIT, PEGylated interferon-gamma (IFNγ) was administered with αPD-L1-PIT. The combination therapy improved the treatment efficacy by increasing PD-L1 expression leading to more efficient cell killing by αPD-L1-PIT. Furthermore, the PEGylated IFNγ led to a CD8+ T cell-dominant tumor microenvironment (TME) with an enhanced anticancer T cell response after αPD-L1-PIT. As a result, even so-called cold tumors exhibited complete responses after αPD-L1-PIT. Thus, combination therapy of PEGylated IFNγ and PD-L1-targeted NIR-PIT has the potential to be an important future strategy for cancer immunotherapy.

2.
Br J Cancer ; 130(10): 1647-1658, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38555315

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME) play a critical role in tumor immunosuppression. However, targeted depletion of CAFs is difficult due to their diverse cells of origin and the resulting lack of specific surface markers. Near-infrared photoimmunotherapy (NIR-PIT) is a novel cancer treatment that leads to rapid cell membrane damage. METHODS: In this study, we used anti-mouse fibroblast activation protein (FAP) antibody to target FAP+ CAFs (FAP-targeted NIR-PIT) and investigated whether this therapy could suppress tumor progression and improve tumor immunity. RESULTS: FAP-targeted NIR-PIT induced specific cell death in CAFs without damaging adjacent normal cells. Furthermore, FAP-targeted NIR-PIT treated mice showed significant tumor regression in the CAF-rich tumor model accompanied by an increase in CD8+ tumor infiltrating lymphocytes (TILs). Moreover, treated tumors showed increased levels of IFN-γ, TNF-α, and IL-2 in CD8+ TILs compared with non-treated tumors, suggesting enhanced antitumor immunity. CONCLUSIONS: Cancers with FAP-positive CAFs in their TME grow rapidly and FAP-targeted NIR-PIT not only suppresses their growth but improves tumor immunosuppression. Thus, FAP-targeted NIR-PIT is a potential therapeutic strategy for selectively targeting the TME of CAF+ tumors.


Subject(s)
Cancer-Associated Fibroblasts , Immunotherapy , Tumor Microenvironment , Animals , Cancer-Associated Fibroblasts/immunology , Cancer-Associated Fibroblasts/metabolism , Mice , Immunotherapy/methods , Tumor Microenvironment/immunology , Endopeptidases , Serine Endopeptidases/metabolism , Gelatinases/metabolism , Membrane Proteins/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Female , Humans , Infrared Rays/therapeutic use , Phototherapy/methods , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Mice, Inbred C57BL
3.
Cancer Sci ; 114(1): 236-246, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36169301

ABSTRACT

Photoimmunotherapy (PIT), carried out using an Ab conjugated to the near infrared dye IRDye700DX, is achieving significant success in target-specific elimination of cells. Fibroblast activation protein alpha (FAP-α) is an important target in cancer because of its expression by cancer-associated fibroblasts (CAFs) as well as by some cancer cells. Cancer-associated fibroblasts that express FAP-α have protumorigenic and immune suppressive functions. Using immunohistochemistry of human breast cancer tissue microarrays, we identified an increase of FAP-α+  CAFs in invasive breast cancer tissue compared to adjacent normal tissue. We found FAP-α expression increased in fibroblasts cocultured with cancer cells. In proof-of-principle studies, we engineered human FAP-α overexpressing MDA-MB-231 and HT-1080 cancer cells and murine FAP-α overexpressing NIH-3T3 fibroblasts to evaluate several anti-FAP-α Abs and selected AF3715 based on its high binding affinity with both human and mouse FAP-α. After conjugation of AF3715 with the phthalocyanine dye IR700, the resultant Ab conjugate, FAP-α-IR700, was evaluated in cells and tumors for its specificity and effectiveness in eliminating FAP-α expressing cell populations with PIT. Fibroblast activation protein-α-IR700-PIT resulted in effective FAP-α-specific cell killing in the engineered cancer cells and in two patient-derived CAFs in a dose-dependent manner. Following an intravenous injection, FAP-α-IR700 retention was three-fold higher than IgG-IR700 in FAP-α overexpressing tumors, and two-fold higher compared to WT tumors. Fibroblast activation protein-α-IR700-PIT resulted in significant growth inhibition of tumors derived from FAP-α overexpressing human cancer cells. A reduction of endogenous FAP-α+ murine CAFs was identified at 7 days after FAP-α-IR700-PIT. Fibroblast activation protein-α-targeted near infrared PIT presents a promising strategy to eliminate FAP-α+ CAFs.


Subject(s)
Breast Neoplasms , Phototherapy , Animals , Humans , Mice , Female , Phototherapy/methods , Endopeptidases/genetics , Membrane Proteins/genetics , Immunotherapy/methods , Breast Neoplasms/drug therapy , Cell Line, Tumor , Xenograft Model Antitumor Assays , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use
4.
Cancer Sci ; 114(12): 4654-4663, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37817415

ABSTRACT

Epidermal growth factor receptor (EGFR) has emerged as an important therapeutic target in many cancers, and overexpression of EGFR is frequently observed in hepatocellular carcinomas (HCCs). Near-infrared photoimmunotherapy (NIR-PIT) is a new anticancer treatment that selectively damages the cell membrane of cancer cells after NIR light-induced photochemical reaction of IR700, which is bound to a targeting antibody on the cell membrane. NIR-PIT using cetuximab-IR700 has already been approved in Japan, is under review by the US Food and Drug Administration (FDA) for advanced head and neck cancers, and its safety has been established. However, EGFR has not been investigated as a target in NIR-PIT in HCCs. Here, we investigate the application of NIR-PIT using cetuximab-IR700 to HCCs using xenograft mouse models of EGFR-expressing HCC cell lines, Hep3B, HuH-7, and SNU-449. In vitro NIR-PIT using EGFR-targeted cetuximab-IR700 killed cells in a NIR light dose-dependent manner. In vivo NIR-PIT resulted in a delayed growth compared with untreated controls. In addition, in vivo NIR-PIT in both models showed histological signs of cancer cell damage, such as cytoplasmic vacuolation and nuclear dysmorphism. A significant decrease in Ki-67 positivity was also observed after NIR-PIT, indicating decreased cancer cell proliferation. This study suggests that NIR-PIT using cetuximab-IR700 has potential for the treatment of EGFR-expressing HCCs.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Mice , Cetuximab/pharmacology , Cetuximab/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Photosensitizing Agents , Cell Line, Tumor , Liver Neoplasms/drug therapy , Immunotherapy/methods , ErbB Receptors , Xenograft Model Antitumor Assays
5.
Proc Natl Acad Sci U S A ; 117(11): 6086-6091, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32123080

ABSTRACT

Recombinant immunotoxins (RITs) are chimeric proteins composed of an Fv and a protein toxin being developed for cancer treatment. The Fv brings the toxin to the cancer cell, but most of the RITs do not reach the tumor and are removed by other organs. To identify cells responsible for RIT removal, and the pathway by which RITs reach these cells, we studied SS1P, a 63-kDa RIT that targets mesothelin-expressing tumors and has a short serum half-life. The major organs that remove RIT were identified by live mouse imaging of RIT labeled with FNIR-Z-759. Cells responsible for SS1P removal were identified by immunohistochemistry and intravital two-photon microscopy of kidneys of rats. The primary organ of SS1P removal is kidney followed by liver. In the kidney, SS1P passes through the glomerulus, is taken up by proximal tubular cells, and transferred to lysosomes. In the liver, macrophages are involved in removal. The short half-life of SS1P is due to its very rapid filtration by the kidney followed by degradation in proximal tubular cells of the kidney. In mice treated with SS1P, proximal tubular cells are damaged and albumin in the urine is increased. SS1P uptake by kidney is reduced by coadministration of l-lysine. Our data suggests that l-lysine administration to humans might prevent SS1P-mediated kidney damage, reduce albumin loss in urine, and alleviate capillary leak syndrome.


Subject(s)
Albuminuria/pathology , Antibodies, Monoclonal/pharmacokinetics , Capillary Leak Syndrome/pathology , Immunotoxins/pharmacokinetics , Kidney Tubules, Proximal/drug effects , Albuminuria/chemically induced , Albuminuria/prevention & control , Albuminuria/urine , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/toxicity , Capillary Leak Syndrome/chemically induced , Capillary Leak Syndrome/prevention & control , Capillary Leak Syndrome/urine , Disease Models, Animal , Female , Fluorescent Dyes/chemistry , Half-Life , Humans , Immunotoxins/administration & dosage , Immunotoxins/chemistry , Immunotoxins/toxicity , Intravital Microscopy , Kidney Glomerulus/metabolism , Kidney Tubules, Proximal/diagnostic imaging , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Lysine/administration & dosage , Mesothelin , Mice , Microscopy, Fluorescence , Neoplasms/drug therapy , Recombinant Proteins/administration & dosage , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacokinetics , Recombinant Proteins/toxicity , Renal Elimination/drug effects , Serum Albumin/analysis , Serum Albumin/metabolism , Staining and Labeling
6.
Gan To Kagaku Ryoho ; 50(13): 1361-1363, 2023 Dec.
Article in Japanese | MEDLINE | ID: mdl-38303275

ABSTRACT

Near-infrared photoimmunotherapy(NIR-PIT)is a novel cancer treatment modality that employs antibody-IRDye700DX (IR700)conjugates. Recently, the clinical application of NIR-PIT has received approval in Japan for patients with inoperable head and neck cancer, specifically targeting the human epidermal growth factor receptor(hEGFR). Furthermore, NIR-PIT extends beyond the scope of tumor antigens and can be employed to eliminate specific host cells that contribute to the creation of immune-permissive environments supporting tumor growth. One of the distinguishing features of NIR-PIT is its ability to selectively eliminate various cell types within the tumor microenvironment(TME)by specifically targeting distinct antigens. By employing podoplanin(PDPN)-targeted NIR-PIT, PDPN-expressing fibroblasts were selectively eradicated, resulting in the suppression of tumor progression and a notable extension of overall survival. Additionally, we investigated the efficacy of depleting myeloid-derived suppressor cells(MDSCs)using NIR-PIT. This approach led to the selective elimination of MDSCs within tumors, and remarkable abscopal effects were observed in bilateral tumor models. Hence, NIR-PIT holds immense promise for the treatment of diverse cancer types by precisely targeting tumor cells, fibroblasts, and immune cells.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Cell Line, Tumor , Phototherapy/methods , Immunotherapy , ErbB Receptors , Xenograft Model Antitumor Assays , Photosensitizing Agents , Neoplasms/drug therapy
7.
J Am Chem Soc ; 144(25): 11075-11080, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35696546

ABSTRACT

Photoconvertible tracking strategies assess the dynamic migration of cell populations. Here we develop phototruncation-assisted cell tracking (PACT) and apply it to evaluate the migration of immune cells into tumor-draining lymphatics. This method is enabled by a recently discovered cyanine photoconversion reaction that leads to the two-carbon truncation and consequent blue-shift of these commonly used probes. By examining substituent effects on the heptamethine cyanine chromophore, we find that introduction of a single methoxy group increases the yield of the phototruncation reaction in neutral buffer by almost 8-fold. When converted to a membrane-bound cell-tracking variant, this probe can be applied in a series of in vitro and in vivo experiments. These include quantitative, time-dependent measurements of the migration of immune cells from tumors to tumor-draining lymph nodes. Unlike previously reported cellular photoconversion approaches, this method does not require genetic engineering and uses near-infrared (NIR) wavelengths. Overall, PACT provides a straightforward approach to label cell populations with spatiotemporal control.


Subject(s)
Coloring Agents , Neoplasms , Carbocyanines , Fluorescent Dyes , Humans
8.
Cancer Sci ; 113(9): 3180-3192, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35723065

ABSTRACT

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, and conventional chemotherapy and molecular-targeted therapies show limited efficacy. Near-infrared photoimmunotherapy (NIR-PIT) is a new anticancer treatment that selectively damages the cell membrane of cancer cells based on NIR light-induced photochemical reactions of the antibody (Ab)-photoabsorber (IRDye700Dx) conjugate and the cell membrane. TNBC is known to express several adhesion molecules on the cell surface providing a potential new target for therapy. Here, we investigated the therapeutic efficacy of intercellular adhesion molecule-1 (ICAM-1)-targeted NIR-PIT using xenograft mouse models subcutaneously inoculated with two human ICAM-1-expressing TNBC cell lines, MDAMB468-luc and MDAMB231 cells. In vitro ICAM-1-targeted NIR-PIT damaged both cell types in a NIR light dose-dependent manner. In vivo ICAM-1-targeted NIR-PIT in both models showed early histological signs of cancer cell damage, such as cytoplasmic vacuolation. Even among the cancer cells that appeared to be morphologically intact within 2 h post treatment, abnormal distribution of the actin cytoskeleton and a significant decrease in Ki-67 positivity were observed, indicating widespread cellular injury reflected in cytoplasmic degeneration. Such damage to cancer cells by NIR-PIT significantly inhibited subsequent tumor growth and improved survival. This study suggests that ICAM-1-targeted NIR-PIT could have potential clinical application in the treatment of TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Animals , Cell Line, Tumor , Humans , Immunotherapy , Intercellular Adhesion Molecule-1 , Mice , Photosensitizing Agents/chemistry , Triple Negative Breast Neoplasms/drug therapy , Xenograft Model Antitumor Assays
9.
Cancer Sci ; 113(6): 1919-1929, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35398956

ABSTRACT

Conventional imaging techniques are available for clinical identification of tumor sites. However, detecting metastatic tumor cells that are spreading from primary tumor sites using conventional imaging techniques remains difficult. In contrast, fluorescence-based labeling systems are useful tools for detecting tumor cells at the single-cell level in cancer research. The ability to detect fluorescent-labeled tumor cells enables investigations of the biodistribution of tumor cells for the diagnosis and treatment of cancer. For example, the presence of fluorescent tumor cells in the peripheral blood of cancer patients is a predictive biomarker for early diagnosis of distant metastasis. The elimination of fluorescent tumor cells without damaging normal tissues is ideal for minimally invasive treatment of cancer. To capture fluorescent tumor cells within normal tissues, however, tumor-specific activated target molecules are needed. This review focuses on recent advances in tumor-targeted fluorescence labeling systems, in which indirect reporter labeling using tumor-specific promoters is applied to fluorescence labeling of tumor cells for the diagnosis and treatment of cancer. Telomerase promoter-dependent fluorescence labeling using replication-competent viral vectors produces fluorescent proteins that can be used to detect and eliminate telomerase-positive tumor cells. Tissue-specific promoter-dependent fluorescence labeling enables identification of specific tumor cells. Vimentin promoter-dependent fluorescence labeling is a useful tool for identifying tumor cells that undergo epithelial-mesenchymal transition (EMT). The evaluation of tumor cells undergoing EMT is important for accurately assessing metastatic potential. Thus, tumor-targeted fluorescence labeling systems represent novel platforms that enable the capture of tumor cells for the diagnosis and treatment of cancer.


Subject(s)
Neoplasms , Telomerase , Cell Line, Tumor , Epithelial-Mesenchymal Transition , Fluorescence , Humans , Neoplasms/diagnosis , Neoplasms/therapy , Telomerase/metabolism , Tissue Distribution
10.
Cancer Immunol Immunother ; 71(12): 2869-2879, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35445836

ABSTRACT

V-domain immunoglobulin suppressor of T cell activation (VISTA) is an inhibitory immune checkpoint molecule that is broadly expressed on lymphoid and myeloid cells, including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Near-infrared photoimmunotherapy (NIR-PIT) is a cancer treatment that utilizes an antibody-photoabsorber (IRDye 700DX NHS ester) conjugate to selectively kill target cells after the local application of NIR light. Depletion of VISTA-expressing cells in the tumor microenvironment (TME) using NIR-PIT could enhance anti-tumor immune responses by removing immune suppressive cells. The purpose of this study was to evaluate the anti-tumor efficacy of VISTA-targeted NIR-PIT using two murine tumor models, MC38-luc and LL2-luc. VISTA was expressed on T cells including Tregs and MDSCs in the TME of these tumors. In contrast, CD45 - cells, including cancer cells, did not express VISTA. VISTA-targeted NIR-PIT depleted VISTA-expressing cells ex vivo. In vivo VISTA-targeted NIR-PIT inhibited tumor progression and prolonged survival in both models. After VISTA-targeted NIR-PIT, augmented CD8 + T cell and dendritic cell activation were observed in regional lymph nodes. In conclusion, VISTA-targeted NIR-PIT can effectively treat tumors by decreasing VISTA-expressing immune suppressor cells in the TME. Local depletion of VISTA-expressing cells in the tumor bed using NIR-PIT is a promising new cancer immunotherapy for treating various types of tumors.


Subject(s)
Neoplasms , T-Lymphocytes, Regulatory , Humans , Mice , Animals , Immune Checkpoint Proteins , Cell Line, Tumor , Immunotherapy , Esters , Xenograft Model Antitumor Assays , Neoplasms/therapy
11.
Cancer Immunol Immunother ; 71(8): 1877-1887, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35013765

ABSTRACT

Near-infrared photoimmunotherapy (NIR-PIT) is a cell-specific cancer therapy that uses an antibody-photoabsorber (IRDye700DX, IR700) conjugate (APC) and NIR light. Intravenously injected APC binds the target cells, and subsequent NIR light exposure induces immunogenic cell death only in targeted cells. Panitumumab and cetuximab are antibodies that target human epidermal growth factor receptor (hEGFR) and are suitable for NIR-PIT. In athymic nude mouse models, panitumumab-based NIR-PIT showed superior therapeutic efficacy compared to cetuximab-based NIR-PIT because of the longer half-life of panitumumab-IR700 (pan-IR700) compared with cetuximab-IR700 (cet-IR700). Two light exposures on two consecutive days have also been shown to induce superior effects compared to a single light exposure in the athymic nude mouse model. However, the optimal regimen has not been assessed in immunocompetent mice. In this study, we compared panitumumab and cetuximab in APCs for NIR-PIT, and single and double light exposures using a newly established hEGFR-expressing cancer cell line derived from immunocompetent C57BL/6 mice (mEERL-hEGFR cell line). Fluorescence imaging showed that the decline of pan-IR700 was slower than cet-IR700 confirming a longer clearance time. Among all the combinations tested, mice receiving pan-IR700 and double light exposure showed the greatest tumor growth inhibition. This group was also shown to activate CD8+ T lymphocytes in lymph nodes and accumulate CD8+ T lymphocytes to a greater extent within the tumor compared with the control group. These results showed that APCs with longer half-life and double light exposure lead to superior outcomes in cancer cell-targeted NIR-PIT in an immunocompetent mouse model.


Subject(s)
Immunotherapy , Photosensitizing Agents , Animals , Cell Line, Tumor , Cetuximab/pharmacology , Cetuximab/therapeutic use , ErbB Receptors/metabolism , Humans , Immunotherapy/methods , Mice , Mice, Inbred C57BL , Mice, Nude , Panitumumab , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Xenograft Model Antitumor Assays
12.
Cancer Immunol Immunother ; 71(12): 3099-3106, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35624180

ABSTRACT

Near-infrared photoimmunotherapy (NIR-PIT) selectively kills tumor cells to which the photo-absorber dye IR700DX-conjugated antibodies are bound and induces a systemic anti-tumor immune response. NIR-PIT induces immunogenic cell death (ICD), releases damage-associated molecular patterns (DAMPs) molecules from dying tumor cells, and activates dendritic cells (DCs). However, it is unclear whether NIR-PIT affects migration of tumor-infiltrating (Ti)-DCs to draining lymph nodes (dLNs), where a systemic anti-tumor response is induced. Here, we utilized in vivo photolabeling of Ti-DCs in tumors in photoconvertible protein Kikume Green-Red (KikGR) mice to show that NIR-PIT enhanced migration of Ti-DCs including cDC1s, cDC2s, and CD326+ DCs to dLNs. This effect was abolished by blocking adenosine triphosphate (ATP), one of the DAMPs molecules, as well as by inhibition of Gαi signaling by pertussis toxin. Thus, ICD induction by NIR-PIT stimulates Ti-DC migration to dLNs via ATP-P2X7 receptor and Gαi protein-coupled receptor signaling pathways and may augment tumor antigen presentation to induce anti-tumor T cells in dLNs.


Subject(s)
Immunotherapy , Receptors, Purinergic P2X7 , Mice , Animals , Pertussis Toxin , Cell Line, Tumor , Mice, Nude , Immunogenic Cell Death , Dendritic Cells , Adenosine Triphosphate , Xenograft Model Antitumor Assays
13.
Int Immunol ; 33(1): 7-15, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32496557

ABSTRACT

Near-infrared photoimmunotherapy (NIR-PIT) is a recently developed hybrid cancer therapy that directly kills cancer cells as well as producing a therapeutic host immune response. Conventional immunotherapies, such as immune-activating cytokine therapy, checkpoint inhibition, engineered T cells and suppressor cell depletion, do not directly destroy cancer cells, but rely exclusively on activating the immune system. NIR-PIT selectively destroys cancer cells, leading to immunogenic cell death that initiates local immune reactions to released cancer antigens from dying cancer cells. These are characterized by rapid maturation of dendritic cells and priming of multi-clonal cancer-specific cytotoxic T cells that kill cells that escaped the initial direct effects of NIR-PIT. The NIR-PIT can be applied to a wide variety of cancers either as monotherapy or in combination with conventional immune therapies to further activate anti-cancer immunity. A global Phase 3 clinical trial (https://clinicaltrials.gov/ct2/show/NCT03769506) of NIR-PIT targeting the epidermal growth factor receptor (EGFR) in patients with recurrent head and neck cancer is underway, employing RM1929/ASP1929, a conjugate of anti-EGFR antibody (cetuximab) plus the photo-absorber IRDye700DX (IR700). NIR-PIT has been given fast-track recognition by regulators in the USA and Japan. A variety of imaging methods, including direct IR700 fluorescence imaging, can be used to monitor NIR-PIT. As experience with NIR-PIT grows, additional antibodies will be employed to target additional antigens on other cancers or to target immune-suppressor cells to enhance host immunity. NIR-PIT will be particularly important in patients with localized and locally advanced cancers and may help such patients avoid side-effects associated with surgery, radiation and chemotherapy.


Subject(s)
Head and Neck Neoplasms/therapy , Immunotherapy/methods , Infrared Rays/therapeutic use , T-Lymphocytes, Cytotoxic/immunology , Antigens, Neoplasm/immunology , Antineoplastic Agents, Immunological/therapeutic use , Cell Line, Tumor , Cetuximab/therapeutic use , Combined Modality Therapy , Dendritic Cells/immunology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/immunology , Head and Neck Neoplasms/immunology , Humans , Indoles/therapeutic use , Lymphocyte Activation/immunology , Organosilicon Compounds/therapeutic use
14.
Mol Pharm ; 19(10): 3600-3611, 2022 10 03.
Article in English | MEDLINE | ID: mdl-35759343

ABSTRACT

Near-infrared photoimmunotherapy (NIR-PIT) is a novel cancer treatment modality that utilizes antibody-photoabsorber conjugates (APCs) and selectively kills target cells after irradiation with NIR light. Originally, NIR-PIT was targeted against cancer cell surface antigens, but as it became clear that NIR-PIT induced a strong immune response, an effort was made to target selected immune cell populations in the tumor microenvironment to encourage an even stronger immune response. Thus, CD25-targeted NIR-PIT and cytotoxic T-lymphocyte associated protein 4 (CTLA4)-targeted NIR-PIT were developed to kill regulatory T cells (Tregs) in conjunction with cancer-cell-targeted NIR-PIT, in order to amplify the host immune response. It was found that CD25-targeted NIR-PIT, using an antibody with the Fc portion removed, led to better results than the unmodified anti-CD25 antibody-directed NIR-PIT presumably because of a negative effect on activated T cells. The aim of this study was to compare the efficacy of an antibody fragment [anti-CTLA4-F(ab')2] and a whole antibody (anti-CTLA4-IgG) for NIR-PIT. There was no significant difference in NIR-PIT-induced Treg killing between the anti-CTLA4-F(ab')2 and anti-CTLA4-IgG antibodies. Although both the antibody and the antibody fragment resulted in significant tumor growth inhibition, the antibody induced more robust CD8+ T cell activation in ipsilateral lymph nodes and was more effective compared to the antibody fragment. The slower clearance of the anti-CTLA4-IgG APC enhanced antitumor immunity by promoting T cell priming in lymph nodes. In conclusion, unlike the results with CD25 where modified antibodies produced superior results to unmodified antibodies, anti-CTLA4-IgG antibody-based NIR-PIT proved more effective in reducing tumor growth than anti-CTLA4-F(ab')2 antibody-based NIR-PIT.


Subject(s)
Immunoconjugates , Immunoglobulin Fragments , Antibodies, Anti-Idiotypic , Cell Line, Tumor , Immunoglobulin G , Immunotherapy/methods , Photosensitizing Agents , Phototherapy/methods , Xenograft Model Antitumor Assays
15.
J Am Chem Soc ; 143(15): 5674-5679, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33844539

ABSTRACT

Fluorogenic probes in the near-infrared (NIR) region have the potential to provide stimuli-dependent information in living organisms. Here, we describe a new class of fluorogenic probes based on the heptamethine cyanine scaffold, the most broadly used NIR chromophore. These compounds result from modification of heptamethine norcyanines with stimuli-responsive carbamate linkers. The resulting cyanine carbamates (CyBams) exhibit exceptional turn-ON ratios (∼170×) due to dual requirements for NIR emission: carbamate cleavage through 1,6-elimination and chromophore protonation. Illustrating their utility in complex in vivo settings, a γ-glutamate substituted CyBam was applied to imaging γ-glutamyl transpeptidase (GGT) activity in a metastatic model of ovarian cancer. Overall, CyBams have significant potential to extend the reach of fluorogenic strategies to intact tissue and live animal imaging applications.


Subject(s)
Carbamates/chemistry , Carbocyanines/chemistry , Fluorescent Dyes/chemistry , Animals , Cell Line, Tumor , Disease Models, Animal , Female , Fluorescence Resonance Energy Transfer , Humans , Mice , Microscopy, Confocal , Neoplasm Metastasis , Ovarian Neoplasms/diagnostic imaging , Ovarian Neoplasms/metabolism , Spectroscopy, Near-Infrared , Transplantation, Heterologous , gamma-Glutamyltransferase/chemistry , gamma-Glutamyltransferase/metabolism
16.
Cancer Sci ; 112(3): 1326-1330, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33543819

ABSTRACT

Near-infrared photoimmunotherapy (NIR-PIT) is a new type of cancer treatment, which was recently approved in Japan for patients with inoperable head and neck cancer. NIR-PIT utilizes antibody-IRDye700DX (IR700) conjugates and NIR light at a wavelength of 690 nm. NIR light exposure leads to physicochemical changes in the antibody-IR700 conjugate cell receptor complex, inducing rapid necrotic cell death. Just as fluorescence guided surgery is useful for surgeons to resect tumors completely, real-time information of tumor locations would help clinicians irradiate NIR light more precisely. IR700 is a fluorescence dye that emits at 702 nm; however, there is no clinically available device optimized for detecting this fluorescence. On the other hand, many indocyanine green (ICG) fluorescence imaging devices have been approved for clinical use. Therefore, we investigated whether LIGHTVISION, one of the clinically available ICG cameras, could be employed for tumor detection. We hypothesized that irradiation with even low-power 690-nm laser light, attenuated by 99% with a neutral-density filter, could be detected with LIGHTVISION without fluorescence decay or therapeutic effect because of the long emission tail of IR700 beyond 800 nm (within the detection range of LIGHTVISION). We demonstrated that the LIGHTVISION camera, originally designed for ICG detection, can detect the tail of IR700 fluorescence in real time, thus enabling the visualization of target tumors.


Subject(s)
Immunotherapy/methods , Neoplasms/diagnostic imaging , Optical Imaging/instrumentation , Phototherapy/methods , Animals , Cell Line, Tumor , Combined Modality Therapy/methods , Female , Humans , Immunoconjugates/administration & dosage , Immunoconjugates/chemistry , Indoles/administration & dosage , Indoles/chemistry , Mice , Neoplasms/therapy , Organosilicon Compounds/administration & dosage , Organosilicon Compounds/chemistry , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/chemistry , Trastuzumab/administration & dosage , Xenograft Model Antitumor Assays
17.
Cancer Sci ; 112(8): 3041-3049, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34101947

ABSTRACT

Near-infrared photoimmunotherapy (NIR-PIT) is a cell selective cancer therapy that uses an antibody-photoabsorber (IRDye700DX, IR700) conjugate (APC) and NIR light. NIR-PIT targeting epidermal growth factor receptor (EGFR) in head and neck cancer (HNC) was conditionally approved in Japan in 2020. APC-bound tumors can be detected using endoscopic fluorescence imaging, whereas NIR light can be delivered using endoscopic fiber optics. The aims of this study were: (1) to assess the feasibility of endoscopic NIR-PIT in an orthotopic HNC model using a CD44-expressing MOC2-luc cell line; and (2) to evaluate quantitative fluorescence endoscopic imaging prior to and during NIR-PIT. The results were compared in 3 experimental groups: (1) untreated controls, (2) APC injection without light exposure (APC-IV), and (3) APC injection followed by NIR light exposure (NIR-PIT). APC injected groups showed significantly higher fluorescence signals for IR700 compared with the control group prior to therapeutic NIR light exposure, and the fluorescence signal significantly decreased in the NIR-PIT group after light exposure. After treatment, the NIR-PIT group showed significantly attenuated bioluminescence compared with the control and the APC-IV groups. Histology demonstrated diffuse necrotic death of the cancer cells in the NIR-PIT group alone. In conclusion, endoscopically delivered light combined with quantitative fluorescence imaging can be used to "see and treat" HNC. This method could also be applied to other types of cancer approachable with endoscopy.


Subject(s)
Antineoplastic Agents, Immunological/administration & dosage , Head and Neck Neoplasms/therapy , Hyaluronan Receptors/antagonists & inhibitors , Indoles/administration & dosage , Organosilicon Compounds/administration & dosage , Administration, Intravenous , Animals , Antineoplastic Agents, Immunological/chemistry , Antineoplastic Agents, Immunological/pharmacology , Cell Line, Tumor , Endoscopy , Feasibility Studies , Female , Head and Neck Neoplasms/immunology , Immunotherapy , Indoles/chemistry , Indoles/pharmacology , Mice , Optical Imaging , Organosilicon Compounds/chemistry , Organosilicon Compounds/pharmacology , Phototherapy , Xenograft Model Antitumor Assays
18.
Mol Pharm ; 18(3): 1238-1246, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33502869

ABSTRACT

Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed cancer treatment that uses antibody-IRDye700DX (IR700) conjugates and was recently approved in Japan for patients with inoperable head and neck cancer. Exposure of the tumor with NIR light at a wavelength of 690 nm leads to physicochemical changes in the antibody-IR700 conjugate-cell receptor complex, resulting in increased hydrophobicity and damage to the integrity of the cell membrane. However, it is important that the tumor be completely exposed to light during NIR-PIT, and thus, a method to provide real-time information on tumor location would help clinicians direct light more accurately. IR700 is a fluorophore that emits at 702 nm; however, there is no clinically available device optimized for detecting this fluorescence. On the other hand, many indocyanine green (ICG) fluorescence imaging devices have been approved for clinical use in operating rooms. Therefore, we investigated whether LIGHTVISION, one of the clinically available ICG cameras, could be employed for NIR-PIT target tumor detection. Due to the limited benefits of adding IR700 molecules, the additional conjugation of IRDye800CW (IR800) or ICG-EG4-Sulfo-OSu (ICG-EG4), which has an overlapping spectrum with ICG, to trastuzumab-IR700 conjugates was performed. Conjugation of second NIR dyes did not interfere the efficacy of NIR-PIT. The dual conjugation of IR800 and IR700 to trastuzumab clearly visualized target tumors with LIGHTVISION by detecting emission light of IR800. We demonstrated that the conjugation of second NIR dyes enables us to provide a real-time feedback of tumor locations prior to NIR-PIT.


Subject(s)
Antibodies, Monoclonal/chemistry , Fluorescent Dyes/chemistry , Immunoconjugates/chemistry , Indocyanine Green/chemistry , Optical Imaging/methods , Phototherapy/methods , 3T3 Cells , Animals , Cell Line , Cell Line, Tumor , Fluorescence , Humans , Immunotherapy/methods , Indocyanine Green/analogs & derivatives , Infrared Rays , Mice , Mice, Inbred BALB C , Mice, Nude , Photosensitizing Agents/chemistry , Trastuzumab/chemistry , Xenograft Model Antitumor Assays/methods
19.
Mol Imaging ; 19: 1536012120934965, 2020.
Article in English | MEDLINE | ID: mdl-32609570

ABSTRACT

BACKGROUND: Near-infrared photoimmunotherapy (NIR-PIT) is a cancer therapy that causes an increase in tumor perfusion, a phenomenon termed the super-enhanced permeability and retention effect. Currently, in vivo treatment efficacy of NIR-PIT is observable days after treatment, but monitoring would be improved by more acute detection of intratumor change. Fluorescence imaging may detect increased tumor perfusion immediately after treatment. METHODS: In the first experiment, athymic nude mouse models bearing unilateral subcutaneous flank tumors were treated with either NIR-PIT or laser therapy only. In the second experiment, mice bearing bilateral flank tumors were treated with NIR-PIT only on the left-sided tumor. In both groups, immediately after treatment, indocyanine green was injected at different doses intravenously, and mice were monitored with the Shimadzu LIGHTVISION fluorescence imaging system for 1 hour. RESULTS: Tumor-to-background ratio of fluorescence intensity increased over the 60 minutes of monitoring in treated mice but did not vary significantly in control mice. Tumor-to-background ratio was highest in the 1 mg kg-1 and 0.3 mg kg-1 doses. In mice with bilateral tumors, tumor-to-untreated tumor ratio increased similarly. CONCLUSIONS: Acute changes in tumor perfusion after NIR-PIT can be detected by real-time fluorescence imaging.


Subject(s)
Computer Systems , Immunotherapy , Indocyanine Green/chemistry , Infrared Rays , Neoplasms/diagnostic imaging , Neoplasms/therapy , Optical Imaging , Phototherapy , Animals , Cell Line, Tumor , Disease Models, Animal , Hemorrhage/pathology , Humans , Mice, Nude , Necrosis
20.
Mol Imaging ; 19: 1536012120962333, 2020.
Article in English | MEDLINE | ID: mdl-33125289

ABSTRACT

With the rise of fluorescence-guided surgery, it has become evident that different types of fluorescence signals can provide value in the surgical setting. Hereby a different range of targets have been pursued in a great variety of surgical indications. One of the future challenges lies in combining complementary fluorescent readouts during one and the same surgical procedure, so-called multi-wavelength fluorescence guidance. In this review we summarize the current clinical state-of-the-art in multi-wavelength fluorescence guidance, basic technical concepts, possible future extensions of existing clinical indications and impact that the technology can bring to clinical care.


Subject(s)
Surgery, Computer-Assisted , Feasibility Studies , Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL