Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
Proc Biol Sci ; 291(2023): 20232711, 2024 May.
Article in English | MEDLINE | ID: mdl-38772420

ABSTRACT

In social insect colonies, selfish behaviour due to intracolonial conflict among members can result in colony-level costs despite close relatedness. In certain termite species, queens use asexual reproduction for within-colony queen succession but rely on sexual reproduction for worker and alate production, resulting in multiple half-clones of a single primary queen competing for personal reproduction. Our study demonstrates that competition over asexual queen succession among different clone types leads to the overproduction of parthenogenetic offspring, resulting in the production of dysfunctional parthenogenetic alates. By genotyping the queens of 23 field colonies of Reticulitermes speratus, we found that clone variation in the queen population reduces as colonies develop. Field sampling of alates and primary reproductives of incipient colonies showed that overproduced parthenogenetic offspring develop into alates that have significantly smaller body sizes and much lower survivorship than sexually produced alates. Our results indicate that while the production of earlier and more parthenogenetic eggs is advantageous for winning the competition for personal reproduction, it comes at a great cost to the colony. Thus, this study highlights the evolutionary interplay between individual-level and colony-level selection on parthenogenesis by queens.


Subject(s)
Isoptera , Parthenogenesis , Animals , Isoptera/physiology , Isoptera/genetics , Female , Reproduction , Social Behavior
2.
Langmuir ; 40(9): 4635-4645, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38377565

ABSTRACT

Quartz is ubiquitous in subsurface formations. The crystal faces have different atomic arrangements. Knowledge of the molecular structures on the surface of quartz is key in many processes. Molecular dynamics simulations are conducted to investigate the atomic arrangement effect on the water film structure, ion adsorption, and wettability at three different α-quartz surfaces. The interfacial structures depend on the quartz surface. Intrasurface hydrogen bonding between surface silanols differs in the α-quartz surface. At the (0001) surface, the OH density is 9.58 nm-2, consisting of Q2 units with two hydroxyl groups per silicone atom. At the (101̅0)-ß surface, the OH density is 7.54 nm-2, consisting of Q3 units with one hydroxyl group per silicone atom; there is significant intrasurface hydrogen bonding. At the (101̅0)-α surface, the OH density is 7.54 nm-2, consisting of Q2 units; however, there is little intrasurface hydrogen bonding. The intrasurface hydrogen bonding results in the exposure of hydrogen-bond acceptors to the aqueous phase, causing water molecules to have an H-up (hydrogen toward surface) orientation. This orientation can be found at the (0001) and (101̅0)-ß surfaces; it is related to the degree of ordering at the surface. The ordering at the (0001) and (101̅0)-ß surfaces is higher than that at the (101̅0)-α surface. In aqueous systems with ions, cation adsorption is the most dominant at the (0001) surface due to the largest surface density of the intrasurface hydrogen bonding, providing interaction sites for cations to be adsorbed. We observe a pronounced decrease in water film thickness from the ions at the (0001) surface only, likely due to significant cation adsorption. In this work, we demonstrate that the hydrogen-bond network, which varies from the plane cut, affects the water film structure and ion adsorption. The contact is nearly zero despite the changes in the film thickness and molecular structure at the temperature of 318 K.

3.
Chem Pharm Bull (Tokyo) ; 72(3): 309-310, 2024.
Article in English | MEDLINE | ID: mdl-38479891

ABSTRACT

The inhibition mode of a retro-inverso (RI) inhibitor containing a hydroxyethylamine dipeptide isostere against the human T-cell leukemia virus type-1 (HTLV-1) protease was examined. Enzymatic evaluation of the RI-modified inhibitor containing a D-allo-Ile residue revealed that HTLV-1 was competitively inhibited. IC50 values of the RI-modified inhibitor and pepstatin A, a standard inhibitor of aspartic proteases, were nearly equivalent.


Subject(s)
Aspartic Acid Endopeptidases , Human T-lymphotropic virus 1 , Humans , Amino Acid Sequence , Aspartic Acid Endopeptidases/chemistry , Aspartic Acid Endopeptidases/metabolism , Human T-lymphotropic virus 1/metabolism , Dipeptides , Protease Inhibitors/pharmacology
4.
Mol Ther ; 29(8): 2554-2570, 2021 08 04.
Article in English | MEDLINE | ID: mdl-33887461

ABSTRACT

Mesenchymal stromal cell (MSC) transplantation has been investigated as an advanced treatment of heart failure; however, further improvement of the therapeutic efficacy and mechanistic understanding are needed. Our previous study has reported that epicardial placement of fibrin sealant films incorporating rat amniotic membrane-derived (AM)-MSCs (MSC-dressings) could address limitations of traditional transplantation methods. To progress this finding toward clinical translation, this current study aimed to examine the efficacy of MSC-dressings using human AM-MSCs (hAM-MSCs) and the underpinning mechanism for myocardial repair. Echocardiography demonstrated that cardiac function and structure were improved in a rat ischemic cardiomyopathy model after hAM-MSC-dressing therapy. hAM-MSCs survived well in the rat heart, enhanced myocardial expression of reparative genes, and attenuated adverse remodeling. Copy number analysis by qPCR revealed that upregulated reparative genes originated from endogenous rat cells rather than hAM-MSCs. These results suggest hAM-MSC-dressing therapy stimulates a secondary release of paracrine factors from endogenous cells improving myocardial repair ("secondary paracrine effect"), and cardiac M2-like macrophages were identified as a potential cell source of repair. We demonstrated hAM-MSCs increased M2-like macrophages through not only enhancing M2 polarization but also augmenting their proliferation and migration capabilities via PGE2, CCL2, and TGF-ß1, resulting in enhanced cardiac function after injury.


Subject(s)
Fibrin/chemistry , Heart Failure/therapy , Macrophages/cytology , Mesenchymal Stem Cells/cytology , Animals , Cell Polarity , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Echocardiography , Female , Gene Expression Regulation , Heart Failure/diagnostic imaging , Heart Failure/genetics , Humans , Macrophages/chemistry , Mesenchymal Stem Cell Transplantation , Mice , Rats
5.
Molecules ; 27(5)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35268749

ABSTRACT

In this study, the effects of side-chain configurations of D-Ile residues of a retro-inverso (RI)-type inhibitor on the human T-cell leukemia virus type 1 (HTLV-1) protease containing a hydroxyethylamine dipeptide isostere were clarified. Prior to evaluation using the RI-type inhibitor, the effects of side-chain configurations of Ile residues of the substrate peptide on the HTLV-1 protease were examined to estimate the influence of side-chain configurations on enzyme activity. Based on the estimation of the influence of side-chain configurations on protease affinity, the RI-type inhibitors containing a D-allo-Ile residue in the corresponding substrate sequence, instead of a D-Ile residue, were synthesized via 9-fluorenylmethoxycarbonyl-based solid-phase peptide synthesis. Refolded recombinant HTLV-1 protease (1-116, L40I) was used for the simple and short evaluation of the inhibitory activities of the synthesized RI-type inhibitors. The results clearly indicated that mimicking the whole topology, comprising both the main- and side-chain structures of the parent inhibitor, is effective for the design of potent RI-modified protease inhibitors.


Subject(s)
Peptide Hydrolases
6.
Cell Tissue Res ; 386(2): 391-413, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34319433

ABSTRACT

All animals, other than Platyhelminthes, produce eggs containing yolk, referred to as "entolecithal" eggs. However, only Neoophora, in the phylum Platyhelminthes, produce "ectolecithal" eggs (egg capsules), in which yolk is stored in the vitelline cells surrounding oocytes. Vitelline cells are derived from vitellaria (yolk glands). Vitellaria are important reproductive organs that may be studied to elucidate unique mechanisms that have been evolutionarily conserved within Platyhelminthes. Currently, only limited molecular level information is available on vitellaria. The current study identified major vitellaria-specific proteins in a freshwater planarian, Dugesia ryukyuensis, using peptide mass fingerprinting (PMF) and expression analyses. Amino acid sequence analysis and orthology analysis via OrthoFinder ver.2.3.8 indicated that the identified major vitellaria-specific novel yolk ferritins were conserved in planarians (Tricladida). Because ferritins play an important role in Fe (iron) storage, we examined the metal elements contained in vitellaria and ectolecithal eggs, using non-heme iron histochemistry, elemental analysis based on inductively coupled plasma mass spectrometry and transmission electron microscopy- energy-dispersive X-ray spectroscopy analysis. Interestingly, vitellaria and egg capsules contained large amounts of aluminum (Al), but not Fe. The knockdown of the yolk ferritin genes caused a decrease in the volume of egg capsules, abnormality in juveniles, and increase in Al content in vitellaria. Yolk ferritins of D. ryukyuensis may regulate Al concentration in vitellaria via their pooling function of Al and protect the egg capsule production and normal embryogenesis from Al toxicity.


Subject(s)
Aluminum/metabolism , Egg Proteins/metabolism , Ferritins/metabolism , Helminth Proteins/metabolism , Iron/metabolism , Planarians/metabolism , Amino Acid Sequence , Animals , Egg Proteins/analysis , Egg Proteins/genetics , Ferritins/analysis , Ferritins/genetics , Helminth Proteins/analysis , Helminth Proteins/genetics , Ovum/growth & development , Ovum/metabolism , Planarians/genetics , Planarians/growth & development
7.
Bioorg Med Chem ; 52: 116517, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34800875

ABSTRACT

Based on the X-ray crystallography of recombinant BACE1 and a hydroxyethylamine-type peptidic inhibitor, we introduced a cross-linked structure between the P1 and P3 side chains of the inhibitor to enhance its inhibitory activity. The P1 and P3 fragments bearing terminal alkenes were synthesized, and a ring-closing metathesis of these alkenes was used to construct the cross-linked structure. Evaluation of ring size using P1 and P3 fragments with various side chain lengths revealed that 13-membered rings were optimal, although their activity was reduced compared to that of the parent compound. Furthermore, the optimal ring structure was found to be a macrocycle with a dimethyl branched substituent at the P3 ß-position, which was approximately 100-fold more active than the non-substituted macrocycle. In addition, the introduction of a 4-carboxymethylphenyl group at the P1' position further improved the activity.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Aspartic Acid Endopeptidases/antagonists & inhibitors , Cross-Linking Reagents/pharmacology , Ethylamines/pharmacology , Macrocyclic Compounds/pharmacology , Peptides/pharmacology , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Cross-Linking Reagents/chemical synthesis , Cross-Linking Reagents/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Ethylamines/chemical synthesis , Ethylamines/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Models, Molecular , Molecular Structure , Peptides/chemical synthesis , Peptides/chemistry , Recombinant Proteins/metabolism , Structure-Activity Relationship
8.
Bioorg Med Chem ; 50: 116459, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34700240

ABSTRACT

An aromatic substituent has been introduced into a known hydroxyethylamine (HEA)-type BACE1 inhibitor containing the superior substrate sequence to enhance inhibitory activity. The HEA-type isosteres bearing different hydroxyl group and methyl group configurations were prepared through a branched synthesis approach using intra- and inter-molecular epoxide opening reactions. The effect of their configuration was evaluated, showing that an R-configuration improved the inhibitory activity, while introduction of a methyl group on the isostere decreased the activity. Based on the non-substituted isostere with an R-configuration, 21 derivatives containing various substituents at the P1' site were synthesized. Our evaluation of the derivatives showed that the structure of the P1' site had a clear effect on activity, and highly potent inhibitor 40g, which showed sub-micromolar activity against recombinant BACE1 (rBACE1), was identified. The docking simulation of 40g with rBACE1 suggested that a carboxymethyl group at the para-position of the P1' benzene ring interacted with Lys285 in the S1' pocket.


Subject(s)
Enzyme Inhibitors/pharmacology , Ethylamines/pharmacology , Amyloid Precursor Protein Secretases , Aspartic Acid Endopeptidases , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Ethylamines/chemical synthesis , Ethylamines/chemistry , Humans , Molecular Structure , Recombinant Proteins , Structure-Activity Relationship
9.
Zoolog Sci ; 38(6): 544-557, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34854286

ABSTRACT

Sexually mature planarians produce sex-inducing substances that induce postembryonic development of hermaphroditic reproductive organs in asexual freshwater planarians. Although the sex-inducing substances may be useful for elucidating the mechanism underlying this reproductive switch, the available information is limited. The potency of sex-inducing activity is conserved, at least at the order level. Recently, we showed that the sex-inducing activity in the land planarian Bipalium nobile was much higher than that in freshwater planarians. In the present study, we performed bioassay-guided fractionation of the sex-inducing substances produced by B. nobile and propose that crucial sex-inducing activity that triggers complete sexualization for asexual worms of the freshwater planarian Dugesia ryukyuensis is produced by additive and/or synergetic effects of various sex-inducing substances involved in ovarian development. The current study provided an isolation scheme for the minimum-required combination of sex-inducing substances for producing crucial sex-inducing activity.


Subject(s)
Planarians , Animals , Biological Assay , Fresh Water , Plant Extracts , Reproduction, Asexual
10.
Bioorg Med Chem ; 28(4): 115273, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31926775

ABSTRACT

An octahydroisochromene scaffold has been introduced into a known SARS 3CL protease inhibitor as a novel hydrophobic core to interact with the S2 pocket of the protease. An alkyl or aryl substituent was also introduced at the 1-position of the octahydroisochromene scaffold and expected to introduce additional interactions with the protease. Sharpless-Katsuki asymmetric epoxidation and Sharpless asymmetric dihydroxylation were employed to construct the octahydroisochromene scaffold. The introductions of the P1 site His-al and the substituent at 1-position was achieved using successive reductive amination reactions. Our initial evaluations of the diastereo-isomeric mixtures (16a-d) revealed that the octahydroisochromene moiety functions as a core hydrophobic scaffold for the S2 pocket of the protease and the substituent at the 1-position may form additional interactions with the protease. The inhibitory activities of the diastereoisomerically-pure inhibitors (3a-d) strongly suggest that a specific stereo-isomer of the octahydroisochromene scaffold, (1S, 3S) 3b, directs the P1 site imidazole, the warhead aldehyde, and substituent at the 1-position of the fused ring to their appropriate pockets in the protease.


Subject(s)
Benzopyrans/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Protease Inhibitors/pharmacology , Severe acute respiratory syndrome-related coronavirus/enzymology , Benzopyrans/chemical synthesis , Benzopyrans/chemistry , Coronavirus 3C Proteases/metabolism , Dose-Response Relationship, Drug , Molecular Structure , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Structure-Activity Relationship
11.
Phys Chem Chem Phys ; 22(9): 5198-5210, 2020 Mar 07.
Article in English | MEDLINE | ID: mdl-32090216

ABSTRACT

A molecular dynamics simulation at the electrode interface of a quaternary ammonium ionic liquid, tributylmethylammonium bis(trifluoromethanesulfonyl)amide ([N1444+][TFSA-]), has been performed. Unlike the commonly used cations, such as 1-alkyl-3-methylimidazolium and 1,1-alkylmethylpyrrolidinium cations, N1444+ has multiple long-alkyl groups (three butyl groups). The behavior of ions at the electrode interface, especially these butyl groups, has been investigated. N1444+ at the first layer mainly has two types of orientations, lying and standing. The lying orientation is dominant at moderately negative potentials. However, the standing one becomes dominant at the more negative potentials. Due to this orientational change, the number of N1444+ increases at the first layer as the potential becomes negative even at the potentials where the anions are completely depleted there. The change in orientation results in the upward deviation of the differential capacitance from the theoretical prediction at the negative potentials. The results suggest that the orientational preference caused by the steric constraint between alkyl groups plays an important role in the behavior of the electric double layer of the ionic liquids.

13.
Basic Res Cardiol ; 114(5): 34, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31372765

ABSTRACT

Reparative macrophages play an important role in cardiac repair post-myocardial infarction (MI). Bone marrow mononuclear cells (BM-MNCs) have been investigated as a donor for cell therapy but with limited clinical success. These cells, however, may be utilized as a source for reparative macrophages. This translational study aimed to establish a robust in vitro protocol to produce functional reparative macrophages from BM-MNCs and to establish pre-clinical evidence of the efficacy of reparative macrophage transplantation for the treatment of MI. Mouse BM-MNCs were treated with M-CSF plus IL-4, IL-10, TGF-ß1 or combinations of these in vitro. The concomitant administration of M-CSF and IL-4 produced the highest rate and largest number of CD11b+F4/80+CD206+ reparative macrophages. Expression and secretion of tissue repair-related factors including IGF-1, TGF-ß1, VEGF and IL1-ra were remarkably enhanced in reparative macrophages compared to BM-MNCs. These cells were transplanted in a mouse MI model, resulting in evident improvement in cardiac function recovery, compared to BM-MNC transplantation. Histological studies showed that reparative macrophage transplantation enhanced myocardial tissue repair including augmented microvascular formation, reduced cardiomyocyte hypertrophy and attenuated interstitial fibrosis. Moreover, survival of reparative macrophages in the heart post-transplantation was increased compared to BM-MNCs. Reparative macrophage transplantation also increased host-derived reparative macrophages in part through TGF-ß secretion. In conclusion, concomitant M-CSF + IL-4 treatment effectively produced reparative macrophages from BM-MNCs in vitro. Transplantation of produced reparative macrophage achieved a superior therapeutic efficacy, compared to BM-MNC transplantation, through the enhanced quantity and quality of donor cell engraftment. Further development of this advanced cell-based therapy is warranted.


Subject(s)
Macrophages/transplantation , Myocardial Infarction/pathology , Animals , Bone Marrow Cells/cytology , Male , Mice , Mice, Inbred C57BL , Translational Research, Biomedical
14.
Bioorg Med Chem ; 27(2): 425-435, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30558861

ABSTRACT

A non-prime site substituent and warheads combined with a decahydroisoquinolin scaffold was evaluated as a novel inhibitor for severe acute respiratory syndrome (SARS) chymotrypsin-like protease (3CLpro). The decahydroisoquinolin scaffold has been demonstrated to be an effective hydrophobic center to interact with S2 site of SARS 3CLpro, but the lack of interactions at S3 to S4 site is thought to be a major reason for the moderate inhibitory activity. In this study, the effects of an additional non-prime site substituent on the scaffold as well as effects of several warheads are evaluated. For the introduction of a desired non-prime site substituent, amino functionality was introduced on the decahydroisoquinolin scaffold, and the scaffold was constructed by Pd(II) catalyzed diastereoselective ring formation. The synthesized decahydroisoquinolin inhibitors showed about 2.4 times potent inhibitory activities for SARS 3CLpro when combined with a non-prime site substituent. The present results indicated not only the expected additional interactions with the SARS 3CLpro but also the possibility of new inhibitors containing a fused-ring system as a hydrophobic scaffold and a new warhead such as thioacetal.


Subject(s)
Antiviral Agents/pharmacology , Cysteine Proteinase Inhibitors/pharmacology , Isoquinolines/pharmacology , Severe acute respiratory syndrome-related coronavirus/enzymology , Viral Proteins/antagonists & inhibitors , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Catalytic Domain , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Isoquinolines/chemical synthesis , Isoquinolines/chemistry , Molecular Docking Simulation , Molecular Structure , Viral Proteins/chemistry
15.
Chem Pharm Bull (Tokyo) ; 67(3): 253-257, 2019.
Article in English | MEDLINE | ID: mdl-30828001

ABSTRACT

The plant alkaloids, iso-6-spectaline and spectaline, isolated from the Cassia or Senna genera contain a characteristic 2,6-disubstituted piperidin-3-ol scaffold. Although both natural products are reported to exhibit a variety of interesting biological activities, few stereo-selective schemes for the construction of the 2,6-disubstituted scaffold have been reported. Following our previous studies regarding the synthesis of (+)-spectaline, herein we report the first convergent synthesis of (-)-iso-6-spectaline using a cross-metathesis under thermal conditions where the cis-2,6-disubstituted piperidin-3-ol scaffold is condensed with a long alkyl chain containing a terminal olefin. The cis-2,6-disubstituted piperidin-3-ol used in the synthesis was prepared simply via Pd(II)-catalyzed diastereoselective cyclization. It was confirmed that (+)-spectaline, an epimer of (-)-iso-6-spectaline, was selectively synthesized by the cross-metathesis reaction under less intense thermal conditions starting from the same cis-2,6-disubstituted piperidin-3-ol derivative.


Subject(s)
Palladium/chemistry , Piperidines/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Carbon-13 Magnetic Resonance Spectroscopy , Catalysis , Chromatography, Liquid , Cyclization , Mass Spectrometry , Microbial Sensitivity Tests , Piperidines/chemistry , Piperidines/pharmacology , Proton Magnetic Resonance Spectroscopy , Staphylococcus epidermidis/drug effects , Structure-Activity Relationship , Thermodynamics
16.
BMC Biol ; 16(1): 96, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30249269

ABSTRACT

BACKGROUND: Sexual reproduction is the norm in almost all animal species, and in many advanced animal societies, both males and females participate in social activities. To date, the complete loss of males from advanced social animal lineages has been reported only in ants and honey bees (Hymenoptera), whose workers are always female and whose males display no helping behaviors even in normal sexual species. Asexuality has not previously been observed in colonies of another major group of social insects, the termites, where the ubiquitous presence of both male and female workers and soldiers indicate that males play a critical role beyond that of reproduction. RESULTS: Here, we report asexual societies in a lineage of the termite Glyptotermes nakajimai. We investigated the composition of mature colonies from ten distinct populations in Japan, finding six asexual populations characterized by a lack of any males in the reproductive, soldier, and worker castes of their colonies, an absence of sperm in the spermathecae of their queens, and the development of unfertilized eggs at a level comparable to that for the development of fertilized eggs in sexual populations of this species. Phylogenetic analyses indicated a single evolutionary origin of the asexual populations, with divergence from sampled sexual populations occurring about 14 million years ago. Asexual colonies differ from sexual colonies in having a more uniform head size in their all-female soldier caste, and fewer soldiers in proportion to other individuals, suggesting increased defensive efficiencies arising from uniform soldier morphology. Such efficiencies may have contributed to the persistence and spread of the asexual lineage. Cooperative colony foundation by multiple queens, the single-site nesting life history common to both the asexual and sexual lineages, and the occasional development of eggs without fertilization even in the sexual lineage are traits likely to have been present in the ancestors of the asexual lineage that may have facilitated the transition to asexuality. CONCLUSIONS: Our findings demonstrate that completely asexual social lineages can evolve from mixed-sex termite societies, providing evidence that males are dispensable for the maintenance of advanced animal societies in which they previously played an active social role.


Subject(s)
Biological Evolution , Isoptera/physiology , Phenotype , Animals , Female , Male , Reproduction, Asexual
17.
Anaerobe ; 57: 45-54, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30880149

ABSTRACT

Bifidobacterium is beneficial for host health and exhibits different O2 sensitivity levels among species or strains via unknown mechanisms. Bifidobacterium bifidum JCM1255T, a type species of Bifidobacterium, is an O2-sensitive bacterium that can grow under low-O2 (5%) conditions, and the growth of this species is inhibited under high-O2 conditions (10% ∼) with accumulation of H2O2. We previously reported that NADH or NAD(P)H oxidase-active fractions were detected during purification using microaerobically grown B. bifidum cells, and the active enzyme was purified from the NADH oxidase-active fraction. The purified enzyme was identified as b-type dihydroorotate dehydrogenase (DHODb) and characterized as a dominant H2O2 producer in B. bifidum. In this study, we performed further purification of the enzyme from the NAD(P)H oxidase-active fraction and characterized the purified enzyme as a part of the H2O2 degradation system in B. bifidum. This purified enzyme was identified as thioredoxin reductase (TrxR); the NAD(P)H oxidase activity of this enzyme was not expressed in anaerobically grown B. bifidum, and mRNA expression was induced by O2 exposure. Furthermore, the purified B. bifidum TrxR interacted with recombinant alkyl hydroperoxide reductase (rAhpC) and exhibited NAD(P)H peroxidase activity. These results suggest that TrxR responds to O2 and protects B. bifidum from oxidative stress by degrading H2O2 via the TrxR-AhpC system.


Subject(s)
Bifidobacterium bifidum/enzymology , Hydrogen Peroxide/metabolism , Oxidants/metabolism , Peroxiredoxins/metabolism , Thioredoxin-Disulfide Reductase/metabolism , Anaerobiosis , Bifidobacterium bifidum/metabolism , Oxygen/metabolism , Oxygen/toxicity , Thioredoxin-Disulfide Reductase/isolation & purification
18.
Am Nat ; 191(6): 677-690, 2018 06.
Article in English | MEDLINE | ID: mdl-29750562

ABSTRACT

Eusocial insects exhibit the most striking example of phenotypic plasticity. There has been a long controversy over the factors determining caste development of individuals in social insects. Here we demonstrate that parental phenotypes influence the social status of offspring not through genetic inheritance but through genomic imprinting in termites. Our extensive field survey and genetic analysis of the termite Reticulitermes speratus show that its breeding system is inconsistent with a genetic caste determination model. We therefore developed a genomic imprinting model, in which queen- and king-specific epigenetic marks antagonistically influence sexual development of offspring. The model accounts for all known empirical data on caste differentiation of R. speratus and other related species. By conducting colony-founding experiments and additively incorporating relevant socio-environmental factors into our genomic imprinting model, we show the relative importance of genomic imprinting and environmental factors in caste determination. The idea of epigenetic inheritance of sexual phenotypes solves the puzzle of why parthenogenetically produced daughters carrying only maternal chromosomes exclusively develop into queens and why parental phenotypes (nymph- or worker-derived reproductives) strongly influence caste differentiation of offspring. According to our model, the worker caste is seen as a "neuter" caste whose sexual development is suppressed due to counterbalanced maternal and paternal imprinting and opens new avenues for understanding the evolution of caste systems in social insects.


Subject(s)
Epigenesis, Genetic , Genomic Imprinting , Hierarchy, Social , Isoptera/genetics , Models, Biological , Animals
19.
Mol Ecol ; 27(23): 4711-4724, 2018 12.
Article in English | MEDLINE | ID: mdl-30368959

ABSTRACT

Identifying traits that facilitate species introductions and successful invasions of ecosystems represents a key issue in ecology. Following their establishment into new environments, many non-native species exhibit phenotypic plasticity with post-introduction changes in behaviour, morphology or life history traits that allow them to overcome the presumed loss of genetic diversity resulting in inbreeding and reduced adaptive potential. Here, we present a unique strategy in the invasive ant Brachyponera chinensis (Emery), in which inbreeding tolerance is a pre-adapted trait for invasion success, allowing this ant to cope with genetic depletion following a genetic bottleneck. We report for the first time that inbreeding is not a consequence of the founder effect following introduction, but it is due to mating between sister queens and their brothers that pre-exists in native populations which may have helped it circumvent the cost of invasion. We show that a genetic bottleneck does not affect the genetic diversity or the level of heterozygosity within colonies and suggest that generations of sib-mating in native populations may have reduced inbreeding depression through purifying selection of deleterious alleles. This work highlights how a unique life history may pre-adapt some species for biological invasions.


Subject(s)
Ants/genetics , Genetics, Population , Inbreeding , Introduced Species , Animals , Female , Founder Effect , Genetic Variation , Heterozygote , Inbreeding Depression , Japan , Male , North Carolina , Selection, Genetic
20.
Inorg Chem ; 57(9): 5475-5485, 2018 May 07.
Article in English | MEDLINE | ID: mdl-29634246

ABSTRACT

Fe(II)-coordinating hexapeptides containing three 2,2'-bipyridine moieties as side chains were designed and synthesized. A cyclic hexapeptide having three [(2,2'-bipyridin)-5-yl]-d-alanine (d-Bpa5) residues, in which d-Bpa5 and Gly are alternately arranged with 3-fold rotational symmetry, coordinated with Fe(II) to form a 1:1 octahedral Fe(II)-peptide complex with a single facial-Λ configuration of the metal-centered chirality. NMR spectroscopy and molecular dynamics simulations revealed that the Fe(II)-peptide complex has an apparent C3-symmetric conformations on the NMR time scale, while the peptide backbone is subject to dynamic conformational exchange between three asymmetric ß/γ conformations and one C3-symmetric γ/γ/γ conformation. The semirigid cyclic hexapeptide preferentially arranged these conformations of the small octahedral Fe(II)-bipyridine complex, as well as the Ru(II) congener, to underpin the single configuration of the metal-centered chirality.


Subject(s)
2,2'-Dipyridyl/chemistry , Ferrous Compounds/chemistry , Macrocyclic Compounds/chemistry , Ruthenium/chemistry , 2,2'-Dipyridyl/analogs & derivatives , Ligands , Macrocyclic Compounds/chemical synthesis , Molecular Structure , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL