Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Nucleic Acids Res ; 49(W1): W431-W437, 2021 07 02.
Article in English | MEDLINE | ID: mdl-33956157

ABSTRACT

Large biomolecular structures are being determined experimentally on a daily basis using established techniques such as crystallography and electron microscopy. In addition, emerging integrative or hybrid methods (I/HM) are producing structural models of huge macromolecular machines and assemblies, sometimes containing 100s of millions of non-hydrogen atoms. The performance requirements for visualization and analysis tools delivering these data are increasing rapidly. Significant progress in developing online, web-native three-dimensional (3D) visualization tools was previously accomplished with the introduction of the LiteMol suite and NGL Viewers. Thereafter, Mol* development was jointly initiated by PDBe and RCSB PDB to combine and build on the strengths of LiteMol (developed by PDBe) and NGL (developed by RCSB PDB). The web-native Mol* Viewer enables 3D visualization and streaming of macromolecular coordinate and experimental data, together with capabilities for displaying structure quality, functional, or biological context annotations. High-performance graphics and data management allows users to simultaneously visualise up to hundreds of (superimposed) protein structures, stream molecular dynamics simulation trajectories, render cell-level models, or display huge I/HM structures. It is the primary 3D structure viewer used by PDBe and RCSB PDB. It can be easily integrated into third-party services. Mol* Viewer is open source and freely available at https://molstar.org/.


Subject(s)
Macromolecular Substances/chemistry , Models, Molecular , Software , Internet , Protein Conformation
2.
Nucleic Acids Res ; 48(W1): W591-W596, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32402071

ABSTRACT

Partial atomic charges serve as a simple model for the electrostatic distribution of a molecule that drives its interactions with its surroundings. Since partial atomic charges are frequently used in computational chemistry, chemoinformatics and bioinformatics, many computational approaches for calculating them have been introduced. The most applicable are fast and reasonably accurate empirical charge calculation approaches. Here, we introduce Atomic Charge Calculator II (ACC II), a web application that enables the calculation of partial atomic charges via all the main empirical approaches and for all types of molecules. ACC II implements 17 empirical charge calculation methods, including the highly cited (QEq, EEM), the recently published (EQeq, EQeq+C), and the old but still often used (PEOE). ACC II enables the fast calculation of charges even for large macromolecular structures. The web server also offers charge visualization, courtesy of the powerful LiteMol viewer. The calculation setup of ACC II is very straightforward and enables the quick calculation of high-quality partial charges. The application is available at https://acc2.ncbr.muni.cz.


Subject(s)
Models, Molecular , Software , Hydrogen/chemistry , Internet , Molecular Structure , Phenols/chemistry , Receptors, Nicotinic/chemistry , Static Electricity , bcl-2-Associated X Protein/chemistry
3.
Nucleic Acids Res ; 48(D1): D335-D343, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31691821

ABSTRACT

The Protein Data Bank in Europe (PDBe), a founding member of the Worldwide Protein Data Bank (wwPDB), actively participates in the deposition, curation, validation, archiving and dissemination of macromolecular structure data. PDBe supports diverse research communities in their use of macromolecular structures by enriching the PDB data and by providing advanced tools and services for effective data access, visualization and analysis. This paper details the enrichment of data at PDBe, including mapping of RNA structures to Rfam, and identification of molecules that act as cofactors. PDBe has developed an advanced search facility with ∼100 data categories and sequence searches. New features have been included in the LiteMol viewer at PDBe, with updated visualization of carbohydrates and nucleic acids. Small molecules are now mapped more extensively to external databases and their visual representation has been enhanced. These advances help users to more easily find and interpret macromolecular structure data in order to solve scientific problems.


Subject(s)
Databases, Protein , Software , Cluster Analysis , Data Accuracy , Europe , Protein Conformation , User-Computer Interface
4.
Glycobiology ; 31(8): 975-987, 2021 09 09.
Article in English | MEDLINE | ID: mdl-33822042

ABSTRACT

Coronavirus disease 2019 (COVID-19) has spread rapidly throughout the globe. The spectrum of disease is broad but among hospitalized patients with COVID-19, respiratory failure from acute respiratory distress syndrome is the leading cause of mortality. There is an urgent need for an effective treatment. The current focus has been developing novel therapeutics, including antivirals, protease inhibitors, vaccines and targeting the overactive cytokine response with anti-cytokine therapy. The overproduction of early response proinflammatory cytokines results in what has been described as a "cytokine storm" is leading eventually to death when the cells fail to terminate the inflammatory response. Accumulating evidence shows that inflammatory cytokines induce selectin ligands that play a crucial role in the pathogenesis of inflammatory diseases by mediating leukocyte migration from the blood into the tissue. Thus, the selectins and selectin ligands represent a promising therapeutic target for the treatment of COVID-19. In this paper, potential pan-selectin inhibitors were identified employing a virtual screening using a docking procedure. For this purpose, the Asinex and ZINC databases of ligands, including approved drugs, biogenic compounds and glycomimetics, altogether 923,602 compounds, were screened against the P-, L- and E-selectin. At first, the experimentally confirmed inhibitors were docked into all three selectins' carbohydrate recognition domains to assess the suitability of the screening procedure. Finally, based on the evaluation of ligands binding, we propose 10 purchasable pan-selectin inhibitors to develop COVID-19 therapeutics.


Subject(s)
Antiviral Agents/chemistry , Biomimetic Materials/chemistry , COVID-19 Drug Treatment , Computer Simulation , Databases, Chemical , SARS-CoV-2/chemistry , Selectins/chemistry , Drug Evaluation, Preclinical , Humans , SARS-CoV-2/metabolism
5.
PLoS Comput Biol ; 16(10): e1008247, 2020 10.
Article in English | MEDLINE | ID: mdl-33075050

ABSTRACT

3D macromolecular structural data is growing ever more complex and plentiful in the wake of substantive advances in experimental and computational structure determination methods including macromolecular crystallography, cryo-electron microscopy, and integrative methods. Efficient means of working with 3D macromolecular structural data for archiving, analyses, and visualization are central to facilitating interoperability and reusability in compliance with the FAIR Principles. We address two challenges posed by growth in data size and complexity. First, data size is reduced by bespoke compression techniques. Second, complexity is managed through improved software tooling and fully leveraging available data dictionary schemas. To this end, we introduce BinaryCIF, a serialization of Crystallographic Information File (CIF) format files that maintains full compatibility to related data schemas, such as PDBx/mmCIF, while reducing file sizes by more than a factor of two versus gzip compressed CIF files. Moreover, for the largest structures, BinaryCIF provides even better compression-factor ten and four versus CIF files and gzipped CIF files, respectively. Herein, we describe CIFTools, a set of libraries in Java and TypeScript for generic and typed handling of CIF and BinaryCIF files. Together, BinaryCIF and CIFTools enable lightweight, efficient, and extensible handling of 3D macromolecular structural data.


Subject(s)
Crystallography/methods , Data Compression/methods , Models, Molecular , Software , Databases, Chemical , Macromolecular Substances/chemistry , Macromolecular Substances/ultrastructure
6.
Phys Chem Chem Phys ; 23(41): 23850-23860, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34647946

ABSTRACT

Tyrosine sulfation alters the biological activity of many proteins involved in different physiological and pathophysiological conditions, such as non-specific immune reaction, response to inflammation and ischemia, targeting of leukocytes and stem cells, or the formation of cancer metastases. Tyrosine sulfation is catalyzed by the enzymes tyrosylprotein sulfotransferases (TPST). In this study, we used QM/MM Car-Parrinello metadynamics simulations together with QM/MM potential energy calculations to investigate the catalytic mechanism of isoform TPST-1. The structural changes along the reaction coordinate are analyzed and discussed. Furthermore, both the methods supported the SN2 type of catalytic mechanism. The reaction barrier obtained from CPMD metadynamics was 12.8 kcal mol-1, and the potential energy scan led to reaction barriers of 11.6 kcal mol-1 and 13.7 kcal mol-1 with the B3LYP and OPBE functional, respectively. The comparison of the two methods (metadynamics and potential energy scan) may be helpful for future mechanistic studies. The insight into the reaction mechanism of TPST-1 might help with the rational design of transition-state TPST inhibitors.


Subject(s)
Sulfotransferases/chemistry , Biocatalysis , Catalytic Domain , Humans , Molecular Dynamics Simulation , Quantum Theory , Thermodynamics
7.
Bioinformatics ; 35(24): 5389-5390, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31263870

ABSTRACT

SUMMARY: Structures in PDB tend to contain errors. This is a very serious issue for authors that rely on such potentially problematic data. The community of structural biologists develops validation methods as countermeasures, which are also included in the PDB deposition system. But how are these validation efforts influencing the structure quality of subsequently published data? Which quality aspects are improving, and which remain problematic? We developed ValTrendsDB, a database that provides the results of an extensive exploratory analysis of relationships between quality criteria, size and metadata of biomacromolecules. Key input data are sourced from PDB. The discovered trends are presented via precomputed information-rich plots. ValTrendsDB also supports the visualization of a set of user-defined structures on top of general quality trends. Therefore, ValTrendsDB enables users to see the quality of structures published by selected author, laboratory or journal, discover quality outliers, etc. ValTrendsDB is updated weekly. AVAILABILITY AND IMPLEMENTATION: Freely accessible at http://ncbr.muni.cz/ValTrendsDB. The web interface was implemented in JavaScript. The database was implemented in C++. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Software , Databases, Protein , Internet , Proteins , User-Computer Interface
8.
Chemistry ; 26(47): 10769-10780, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32208534

ABSTRACT

The molecular recognition of carbohydrates by proteins plays a key role in many biological processes including immune response, pathogen entry into a cell, and cell-cell adhesion (e.g., in cancer metastasis). Carbohydrates interact with proteins mainly through hydrogen bonding, metal-ion-mediated interaction, and non-polar dispersion interactions. The role of dispersion-driven CH-π interactions (stacking) in protein-carbohydrate recognition has been underestimated for a long time considering the polar interactions to be the main forces for saccharide interactions. However, over the last few years it turns out that non-polar interactions are equally important. In this study, we analyzed the CH-π interactions employing bioinformatics (data mining, structural analysis), several experimental (isothermal titration calorimetry (ITC), X-ray crystallography), and computational techniques. The Protein Data Bank (PDB) has been used as a source of structural data. The PDB contains over 12 000 protein complexes with carbohydrates. Stacking interactions are very frequently present in such complexes (about 39 % of identified structures). The calculations and the ITC measurement results suggest that the CH-π stacking contribution to the overall binding energy ranges from 4 up to 8 kcal mol-1 . All the results show that the stacking CH-π interactions in protein-carbohydrate complexes can be considered to be a driving force of the binding in such complexes.


Subject(s)
Carbohydrates/chemistry , Carbon/chemistry , Computational Biology , Hydrogen/chemistry , Proteins/chemistry , Hydrogen Bonding , In Vitro Techniques , Protein Binding , Thermodynamics
9.
Nucleic Acids Res ; 46(D1): D399-D405, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29036719

ABSTRACT

ChannelsDB (http://ncbr.muni.cz/ChannelsDB) is a database providing information about the positions, geometry and physicochemical properties of channels (pores and tunnels) found within biomacromolecular structures deposited in the Protein Data Bank. Channels were deposited from two sources; from literature using manual deposition and from a software tool automatically detecting tunnels leading to the enzymatic active sites and selected cofactors, and transmembrane pores. The database stores information about geometrical features (e.g. length and radius profile along a channel) and physicochemical properties involving polarity, hydrophobicity, hydropathy, charge and mutability. The stored data are interlinked with available UniProt annotation data mapping known mutation effects to channel-lining residues. All structures with channels are displayed in a clear interactive manner, further facilitating data manipulation and interpretation. As such, ChannelsDB provides an invaluable resource for research related to deciphering the biological function of biomacromolecular channels.


Subject(s)
Amino Acids/chemistry , Cytochrome P-450 CYP2D6/chemistry , Databases, Protein , Ion Channels/chemistry , Nuclear Pore/chemistry , Software , Amino Acids/metabolism , Animals , Catalytic Domain , Coenzymes/chemistry , Coenzymes/metabolism , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Eukaryotic Cells/cytology , Eukaryotic Cells/enzymology , Gene Expression , Humans , Hydrophobic and Hydrophilic Interactions , Ion Channels/genetics , Ion Channels/metabolism , Mutation , Nuclear Pore/genetics , Nuclear Pore/metabolism , Prokaryotic Cells/cytology , Prokaryotic Cells/enzymology , Static Electricity
10.
Nucleic Acids Res ; 46(W1): W368-W373, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29718451

ABSTRACT

MOLEonline is an interactive, web-based application for the detection and characterization of channels (pores and tunnels) within biomacromolecular structures. The updated version of MOLEonline overcomes limitations of the previous version by incorporating the recently developed LiteMol Viewer visualization engine and providing a simple, fully interactive user experience. The application enables two modes of calculation: one is dedicated to the analysis of channels while the other was specifically designed for transmembrane pores. As the application can use both PDB and mmCIF formats, it can be leveraged to analyze a wide spectrum of biomacromolecular structures, e.g. stemming from NMR, X-ray and cryo-EM techniques. The tool is interconnected with other bioinformatics tools (e.g., PDBe, CSA, ChannelsDB, OPM, UniProt) to help both setup and the analysis of acquired results. MOLEonline provides unprecedented analytics for the detection and structural characterization of channels, as well as information about their numerous physicochemical features. Here we present the application of MOLEonline for structural analyses of α-hemolysin and transient receptor potential mucolipin 1 (TRMP1) pores. The MOLEonline application is freely available via the Internet at https://mole.upol.cz.


Subject(s)
Computational Biology , Internet , Protein Conformation , Software , Models, Molecular
11.
Molecules ; 25(12)2020 Jun 19.
Article in English | MEDLINE | ID: mdl-32575485

ABSTRACT

Selectins belong to a group of adhesion molecules that fulfill an essential role in immune and inflammatory responses and tissue healing. Selectins are glycoproteins that decode the information carried by glycan structures, and non-covalent interactions of selectins with these glycan structures mediate biological processes. The sialylated and fucosylated tetrasaccharide sLex is an essential glycan recognized by selectins. Several glycosyltransferases are responsible for the biosynthesis of the sLex tetrasaccharide. Selectins are involved in a sequence of interactions of circulated leukocytes with endothelial cells in the blood called the adhesion cascade. Recently, it has become evident that cancer cells utilize a similar adhesion cascade to promote metastases. However, like Dr. Jekyll and Mr. Hyde's two faces, selectins also contribute to tissue destruction during some infections and inflammatory diseases. The most prominent function of selectins is associated with the initial stage of the leukocyte adhesion cascade, in which selectin binding enables tethering and rolling. The first adhesive event occurs through specific non-covalent interactions between selectins and their ligands, with glycans functioning as an interface between leukocytes or cancer cells and the endothelium. Targeting these interactions remains a principal strategy aimed at developing new therapies for the treatment of immune and inflammatory disorders and cancer. In this review, we will survey the significant contributions to and the current status of the understanding of the structure of selectins and the role of selectins in various biological processes. The potential of selectins and their ligands as therapeutic targets in chronic and acute inflammatory diseases and cancer will also be discussed. We will emphasize the structural characteristic of selectins and the catalytic mechanisms of glycosyltransferases involved in the biosynthesis of glycan recognition determinants. Furthermore, recent achievements in the synthesis of selectin inhibitors will be reviewed with a focus on the various strategies used for the development of glycosyltransferase inhibitors, including substrate analog inhibitors and transition state analog inhibitors, which are based on knowledge of the catalytic mechanism.


Subject(s)
Cell Adhesion , Leukocyte Rolling , Leukocytes/metabolism , Neoplasm Proteins/metabolism , Neoplasms/metabolism , Selectins/metabolism , Animals , Humans , Inflammation/metabolism , Inflammation/pathology , Leukocytes/pathology , Neoplasms/pathology
12.
Bioinformatics ; 33(22): 3648-3651, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29036546

ABSTRACT

SUMMARY: CrocoBLAST is a tool for dramatically speeding up BLAST+ execution on any computer. Alignments that would take days or weeks with NCBI BLAST+ can be run overnight with CrocoBLAST. Additionally, CrocoBLAST provides features critical for NGS data analysis, including: results identical to those of BLAST+; compatibility with any BLAST+ version; real-time information regarding calculation progress and remaining run time; access to partial alignment results; queueing, pausing, and resuming BLAST+ calculations without information loss. AVAILABILITY AND IMPLEMENTATION: CrocoBLAST is freely available online, with ample documentation (webchem.ncbr.muni.cz/Platform/App/CrocoBLAST). No installation or user registration is required. CrocoBLAST is implemented in C, while the graphical user interface is implemented in Java. CrocoBLAST is supported under Linux and Windows, and can be run under Mac OS X in a Linux virtual machine. CONTACT: jkoca@ceitec.cz. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Microbiota/genetics , Software , Escherichia coli/genetics , Genomics/methods , Sequence Analysis, DNA/methods , Sequence Analysis, Protein/methods
13.
Chemistry ; 24(27): 7051-7059, 2018 May 11.
Article in English | MEDLINE | ID: mdl-29575294

ABSTRACT

Mycobacterium tuberculosis features a unique cell wall that protects the bacterium from the external environment. Disruption of the cell wall assembly is a promising direction for novel anti-tuberculotic drugs. A key component of the cell wall is galactan, a polysaccharide chain composed of galactofuranose (Galf) units connected by alternating ß-(1-5) and ß-(1-6) linkages. The majority of the galactan chain is biosynthesized by a bifunctional enzyme-galactofuranosyl transferase 2 (GlfT2). GlfT2 catalyzes two reactions: the formation of ß-(1-5) and ß-(1-6) linkages. It was suggested that the enzyme acts through a processive mechanism until it adds 30-35 Galf units in a single active site. We applied a QM/MM string method coupled with ab initio molecular dynamics simulations to study the two reactions catalyzed by GlfT2. We showed that both reactions proceed very similarly and feature similar transition-state structures. We also present novel information about the ring puckering behavior of the five-membered furanose ring during the glycosyltransferase reaction and a calculated transition-state structure with galactose in a furanose form that may be used as a guide for the rational design of very specific and extremely potent inhibitors, that is, transition-state analogues, for GlfT2. Due to the absence of a furanose form of galactose in humans, transition-state-analogous inhibitors represent an attractive scaffold for the development of novel antibacterial drugs.


Subject(s)
Bacterial Proteins/metabolism , Galactosyltransferases/metabolism , Molecular Dynamics Simulation , Mycobacterium tuberculosis/enzymology , Quantum Theory , Bacterial Proteins/chemistry , Binding Sites , Catalytic Domain , Galactose/chemistry , Galactose/metabolism , Galactosyltransferases/chemistry , Substrate Specificity , Thermodynamics
14.
Nucleic Acids Res ; 43(18): 8673-93, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26245347

ABSTRACT

The 22-mer c-kit promoter sequence folds into a parallel-stranded quadruplex with a unique structure, which has been elucidated by crystallographic and NMR methods and shows a high degree of structural conservation. We have carried out a series of extended (up to 10 µs long, ∼50 µs in total) molecular dynamics simulations to explore conformational stability and loop dynamics of this quadruplex. Unfolding no-salt simulations are consistent with a multi-pathway model of quadruplex folding and identify the single-nucleotide propeller loops as the most fragile part of the quadruplex. Thus, formation of propeller loops represents a peculiar atomistic aspect of quadruplex folding. Unbiased simulations reveal µs-scale transitions in the loops, which emphasizes the need for extended simulations in studies of quadruplex loops. We identify ion binding in the loops which may contribute to quadruplex stability. The long lateral-propeller loop is internally very stable but extensively fluctuates as a rigid entity. It creates a size-adaptable cleft between the loop and the stem, which can facilitate ligand binding. The stability gain by forming the internal network of GA base pairs and stacks of this loop may be dictating which of the many possible quadruplex topologies is observed in the ground state by this promoter quadruplex.


Subject(s)
G-Quadruplexes , Promoter Regions, Genetic , Proto-Oncogene Proteins c-kit/genetics , Base Pairing , Cations , Molecular Dynamics Simulation , Nucleic Acid Denaturation , Potassium/chemistry , Sodium/chemistry
15.
Nucleic Acids Res ; 43(W1): W383-8, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-26013810

ABSTRACT

Well defined biomacromolecular patterns such as binding sites, catalytic sites, specific protein or nucleic acid sequences, etc. precisely modulate many important biological phenomena. We introduce PatternQuery, a web-based application designed for detection and fast extraction of such patterns. The application uses a unique query language with Python-like syntax to define the patterns that will be extracted from datasets provided by the user, or from the entire Protein Data Bank (PDB). Moreover, the database-wide search can be restricted using a variety of criteria, such as PDB ID, resolution, and organism of origin, to provide only relevant data. The extraction generally takes a few seconds for several hundreds of entries, up to approximately one hour for the whole PDB. The detected patterns are made available for download to enable further processing, as well as presented in a clear tabular and graphical form directly in the browser. The unique design of the language and the provided service could pave the way towards novel PDB-wide analyses, which were either difficult or unfeasible in the past. The application is available free of charge at http://ncbr.muni.cz/PatternQuery.


Subject(s)
Databases, Protein , Molecular Conformation , Software , Binding Sites , Internet , Lectins/chemistry , Macromolecular Substances/chemistry , Models, Molecular , Protein Conformation , Zinc Fingers
16.
Nucleic Acids Res ; 43(20): 9626-44, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26433223

ABSTRACT

DNA G-hairpins are potential key structures participating in folding of human telomeric guanine quadruplexes (GQ). We examined their properties by standard MD simulations starting from the folded state and long T-REMD starting from the unfolded state, accumulating ∼130 µs of atomistic simulations. Antiparallel G-hairpins should spontaneously form in all stages of the folding to support lateral and diagonal loops, with sub-µs scale rearrangements between them. We found no clear predisposition for direct folding into specific GQ topologies with specific syn/anti patterns. Our key prediction stemming from the T-REMD is that an ideal unfolded ensemble of the full GQ sequence populates all 4096 syn/anti combinations of its four G-stretches. The simulations can propose idealized folding pathways but we explain that such few-state pathways may be misleading. In the context of the available experimental data, the simulations strongly suggest that the GQ folding could be best understood by the kinetic partitioning mechanism with a set of deep competing minima on the folding landscape, with only a small fraction of molecules directly folding to the native fold. The landscape should further include non-specific collapse processes where the molecules move via diffusion and consecutive random rare transitions, which could, e.g. structure the propeller loops.


Subject(s)
G-Quadruplexes , Molecular Dynamics Simulation , Telomere/chemistry , Cations/chemistry , DNA/chemistry , Humans , Oxytricha/genetics
17.
Nucleic Acids Res ; 43(Database issue): D369-75, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25392418

ABSTRACT

Following the discovery of serious errors in the structure of biomacromolecules, structure validation has become a key topic of research, especially for ligands and non-standard residues. ValidatorDB (freely available at http://ncbr.muni.cz/ValidatorDB) offers a new step in this direction, in the form of a database of validation results for all ligands and non-standard residues from the Protein Data Bank (all molecules with seven or more heavy atoms). Model molecules from the wwPDB Chemical Component Dictionary are used as reference during validation. ValidatorDB covers the main aspects of validation of annotation, and additionally introduces several useful validation analyses. The most significant is the classification of chirality errors, allowing the user to distinguish between serious issues and minor inconsistencies. Other such analyses are able to report, for example, completely erroneous ligands, alternate conformations or complete identity with the model molecules. All results are systematically classified into categories, and statistical evaluations are performed. In addition to detailed validation reports for each molecule, ValidatorDB provides summaries of the validation results for the entire PDB, for sets of molecules sharing the same annotation (three-letter code) or the same PDB entry, and for user-defined selections of annotations or PDB entries.


Subject(s)
Databases, Protein , Proteins/chemistry , Amino Acids/chemistry , Internet , Ligands , Models, Molecular , Molecular Sequence Annotation , Protein Conformation , Reproducibility of Results
18.
Biochim Biophys Acta ; 1850(5): 1072-1090, 2015 May.
Article in English | MEDLINE | ID: mdl-25450173

ABSTRACT

BACKGROUND: Many prokaryotic genomes comprise Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) offering defense against foreign nucleic acids. These immune systems are conditioned by the production of small CRISPR-derived RNAs matured from long RNA precursors. This often requires a Csy4 endoribonuclease cleaving the RNA 3'-end. METHODS: We report extended explicit solvent molecular dynamic (MD) simulations of Csy4/RNA complex in precursor and product states, based on X-ray structures of product and inactivated precursor (55 simulations; ~3.7µs in total). RESULTS: The simulations identify double-protonated His29 and deprotonated terminal phosphate as the likely dominant protonation states consistent with the product structure. We revealed potential substates consistent with Ser148 and His29 acting as the general base and acid, respectively. The Ser148 could be straightforwardly deprotonated through solvent and could without further structural rearrangements deprotonate the nucleophile, contrasting similar studies investigating the general base role of nucleobases in ribozymes. We could not locate geometries consistent with His29 acting as general base. However, we caution that the X-ray structures do not always capture the catalytically active geometries and then the reactive structures may be unreachable by the simulation technique. CONCLUSIONS: We identified potential catalytic arrangement of the Csy4/RNA complex but we also report limitations of the simulation technique. Even for the dominant protonation state we could not achieve full agreement between the simulations and the structural data. GENERAL SIGNIFICANCE: Potential catalytic arrangement of the Csy4/RNA complex is found. Further, we provide unique insights into limitations of simulations of protein/RNA complexes, namely, the influence of the starting experimental structures and force field limitations. This article is part of a Special Issue entitled Recent developments of molecular dynamics.


Subject(s)
CRISPR-Associated Proteins/chemistry , CRISPR-Cas Systems , Clustered Regularly Interspaced Short Palindromic Repeats , Endoribonucleases/chemistry , Molecular Dynamics Simulation , Binding Sites , CRISPR-Associated Proteins/metabolism , Catalytic Domain , Crystallography, X-Ray , Endoribonucleases/metabolism , Protein Binding , Time Factors
19.
Glycobiology ; 26(7): 757-771, 2016 07.
Article in English | MEDLINE | ID: mdl-26821880

ABSTRACT

The enzyme UDP-N-acetylglucosamine: α-d-mannoside ß-1-6 N-acetylglucosaminyltransferase V (GnT-V) catalyzes the transfer of GlcNAc from the UDP-GlcNAc donor to the α-1-6-linked mannose of the trimannosyl core structure of glycoproteins to produce the ß-1-6-linked branching of N-linked oligosaccharides. ß-1-6-GlcNAc-branched N-glycans are associated with cancer growth and metastasis. Therefore, the inhibition of GnT-V represents a key target for anti-cancer drug development. However, the development of potent and specific inhibitors of GnT-V is hampered by the lack of information on the three-dimensional structure of the enzyme and on the binding characteristics of its substrates. Here we present the first 3D structure of GnT-V as a result of homology modeling. Various alignment methods, docking the donor and acceptor substrates, and molecular dynamics simulation were used to construct seven homology models of GnT-V and characterize the binding of its substrates. The best homology model is consistent with available experimental data. The three-dimensional model, the structure of the enzyme catalytic site and binding information obtained for the donor and acceptor can be useful in studies of the catalytic mechanism and design of inhibitors of GnT-V.


Subject(s)
Glycosyltransferases/chemistry , Molecular Conformation , N-Acetylglucosaminyltransferases/chemistry , Polysaccharides/chemistry , Humans , Mannose/chemistry , Models, Molecular , Molecular Dynamics Simulation , Polysaccharides/genetics , Substrate Specificity
20.
PLoS Comput Biol ; 11(4): e1004061, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25849117

ABSTRACT

The glycosylation of cell surface proteins plays a crucial role in a multitude of biological processes, such as cell adhesion and recognition. To understand the process of protein glycosylation, the reaction mechanisms of the participating enzymes need to be known. However, the reaction mechanism of retaining glycosyltransferases has not yet been sufficiently explained. Here we investigated the catalytic mechanism of human isoform 2 of the retaining glycosyltransferase polypeptide UDP-GalNAc transferase by coupling two different QM/MM-based approaches, namely a potential energy surface scan in two distance difference dimensions and a minimum energy reaction path optimisation using the Nudged Elastic Band method. Potential energy scan studies often suffer from inadequate sampling of reactive processes due to a predefined scan coordinate system. At the same time, path optimisation methods enable the sampling of a virtually unlimited number of dimensions, but their results cannot be unambiguously interpreted without knowledge of the potential energy surface. By combining these methods, we have been able to eliminate the most significant sources of potential errors inherent to each of these approaches. The structural model is based on the crystal structure of human isoform 2. In the QM/MM method, the QM region consists of 275 atoms, the remaining 5776 atoms were in the MM region. We found that ppGalNAcT2 catalyzes a same-face nucleophilic substitution with internal return (SNi). The optimized transition state for the reaction is 13.8 kcal/mol higher in energy than the reactant while the energy of the product complex is 6.7 kcal/mol lower. During the process of nucleophilic attack, a proton is synchronously transferred to the leaving phosphate. The presence of a short-lived metastable oxocarbenium intermediate is likely, as indicated by the reaction energy profiles obtained using high-level density functionals.


Subject(s)
Glycosyltransferases/chemistry , Glycosyltransferases/ultrastructure , Models, Chemical , Models, Molecular , Polysaccharides/chemistry , Polysaccharides/ultrastructure , Algorithms , Binding Sites , Catalysis , Computer Simulation , Glycosylation , Kinetics , Protein Binding , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL