Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters

Publication year range
1.
Cell ; 164(5): 1060-1072, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26919435

ABSTRACT

Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors.


Subject(s)
Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/pathology , DNA Methylation , Neuroectodermal Tumors/genetics , Neuroectodermal Tumors/pathology , Amino Acid Sequence , Central Nervous System Neoplasms/classification , Central Nervous System Neoplasms/diagnosis , Child , Forkhead Transcription Factors/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Molecular Sequence Data , Neuroectodermal Tumors/classification , Neuroectodermal Tumors/diagnosis , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/genetics , Repressor Proteins/chemistry , Repressor Proteins/genetics , Signal Transduction , Trans-Activators , Tumor Suppressor Proteins/genetics
2.
Nature ; 555(7697): 469-474, 2018 03 22.
Article in English | MEDLINE | ID: mdl-29539639

ABSTRACT

Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging-with substantial inter-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show that the availability of this method may have a substantial impact on diagnostic precision compared to standard methods, resulting in a change of diagnosis in up to 12% of prospective cases. For broader accessibility, we have designed a free online classifier tool, the use of which does not require any additional onsite data processing. Our results provide a blueprint for the generation of machine-learning-based tumour classifiers across other cancer entities, with the potential to fundamentally transform tumour pathology.


Subject(s)
Central Nervous System Neoplasms/diagnosis , Central Nervous System Neoplasms/genetics , DNA Methylation , Adolescent , Adult , Aged , Aged, 80 and over , Central Nervous System Neoplasms/classification , Central Nervous System Neoplasms/pathology , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Male , Middle Aged , Reproducibility of Results , Unsupervised Machine Learning , Young Adult
3.
Mod Pathol ; 36(3): 100044, 2023 03.
Article in English | MEDLINE | ID: mdl-36788095

ABSTRACT

High-grade endometrial stromal sarcomas (HGESSs) are aggressive uterine tumors harboring oncogenic fusion proteins. We performed a molecular study of 36 HGESSs with YWHAE::NUTM2 gene fusion, assessing co-occurring genetic events, and showed that these tumors frequently harbor recurrent events involving the CDKN2A locus on chromosome 9p. Using array-based copy number profiling and CDKN2A fluorescence in situ hybridization, we identified homozygous and hemizygous deletions of CDKN2A in 18% and 14% of tumors (n = 22 analyzed), respectively. While all YWHAE-rearranged HGESSs with retained disomy for CDKN2A were immunohistochemically positive for p16INK4 (p16), all tumors with homozygous deletion of CDKN2A showed complete absence of p16 staining. Of the 2 tumors with a hemizygous deletion of CDKN2A, 1 showed diffuse and strong p16 positivity, whereas the other showed complete absence of staining. In the p16-negative case, we did not find intragenic mutations or DNA promoter methylation to explain the p16 protein loss, implicating other mechanisms in the regulation of protein expression. In our cohort, subclonal or complete absence of p16 staining was associated with worse overall survival compared with positive p16 staining (1-year overall survival: 28.6% vs 90.7%, respectively; n = 32; P < .001), with all 7 patients in the p16-negative group having succumbed to their disease within 2 years of diagnosis. Our results suggested CDKN2A alterations as a cooperative driver of tumorigenesis in a subset of HGESSs with the YWHAE::NUTM2 gene fusion and showed p16 to be a potential prognostic marker.


Subject(s)
Endometrial Neoplasms , Sarcoma, Endometrial Stromal , Sarcoma , Female , Humans , Endometrial Neoplasms/pathology , Prognosis , In Situ Hybridization, Fluorescence , Sarcoma, Endometrial Stromal/genetics , Sarcoma, Endometrial Stromal/pathology , Homozygote , Sequence Deletion , Sarcoma/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Gene Fusion , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism
4.
J Pathol ; 257(2): 140-145, 2022 06.
Article in English | MEDLINE | ID: mdl-35218556

ABSTRACT

SWI/SNF (SWItch/Sucrose Non-Fermentable) complex deficiency has been reported in a wide variety of cancers and is often associated with an undifferentiated phenotype. In the gynecologic tract SWI/SNF-deficient cancers are diagnostically challenging and little is known about their cellular origins. Here we show that undifferentiated endometrial carcinoma (UDEC), SMARCA4-deficient uterine sarcoma (SDUS), and ovarian small cell carcinoma, hypercalcemic type (SCCOHT) harbor distinct DNA methylation signatures despite shared morphology and SWI/SNF inactivation. Our results indicate that the cellular context is an important determinant of the epigenetic landscape, even in the setting of core SWI/SNF deficiency, and therefore methylation profiling may represent a useful diagnostic tool in undifferentiated, SWI/SNF-deficient cancers. Furthermore, applying copy number analyses and group-wise differential methylation analyses including endometrioid endometrial carcinomas and extracranial malignant rhabdoid tumors, we uncover analogous molecular features in SDUS and SCCOHT in contrast to UDEC. These results suggest that SDUS and SCCOHT represent chromosomally stable SWI/SNF-deficient cancers of the gynecologic tract, which are within the broader spectrum of malignant rhabdoid tumors. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Carcinoma, Endometrioid , Carcinoma, Small Cell , Endometrial Neoplasms , Hypercalcemia , Lung Neoplasms , Rhabdoid Tumor , Small Cell Lung Carcinoma , Carcinoma, Endometrioid/genetics , DNA Helicases/genetics , DNA Methylation , Endometrial Neoplasms/genetics , Female , Humans , Nuclear Proteins/genetics , Transcription Factors/genetics , United Kingdom
5.
Genes Chromosomes Cancer ; 61(6): 346-355, 2022 06.
Article in English | MEDLINE | ID: mdl-35388566

ABSTRACT

Tumor classification has evolved over the last decades with technical progress contributing much to our current concepts. Among diagnostic hallmarks, novelties were immunostaining, Fluorescence in situ hybridization, Sanger sequencing followed by massive parallel DNA sequencing, and recently, epigenetic analyses have entered the stage. Although each of these techniques was revolutionary and, in some way, also disruptive in certain diagnostic fields, it took years to decades for broad implementation into standard pathological-diagnostic algorithms. In contrast, DNA methylation profiling has been accepted in short time as a game changer with lasting impact on brain tumor classification and with potential for classification of other tumor types. This review provides a brief introduction in DNA methylation-based tumor classification. We present why DNA methylation signatures are attractive diagnostic biomarkers, discuss present achievements and future aims and explain the integration of methylation-based classifiers in diagnostic procedure. Finally, we provide an outlook on the challenges and opportunities associated with DNA methylation-based tumor profiling.


Subject(s)
Brain Neoplasms , Sarcoma , Soft Tissue Neoplasms , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Brain Neoplasms/pathology , DNA Methylation , Humans , In Situ Hybridization, Fluorescence , Sarcoma/genetics , Soft Tissue Neoplasms/genetics
6.
Cancer ; 128(4): 697-707, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34674226

ABSTRACT

BACKGROUND: A high frequency of primary central nervous system (CNS) sarcomas was observed in Peru. This article describes the clinical characteristics, biological characteristics, and outcome of 70 pediatric patients. METHODS: Data from 70 pediatric patients with primary CNS sarcomas diagnosed between January 2005 and June 2018 were analyzed. DNA methylation profiling from 28 tumors and gene panel sequencing from 27 tumors were available. RESULTS: The median age of the patients was 6 years (range, 2-17.5 years), and 66 of 70 patients had supratentorial tumors. DNA methylation profiling classified 28 of 28 tumors as primary CNS sarcoma, DICER1 mutant. DICER1 mutations were found in 26 of 27 cases, TP53 mutations were found in 22 of 27 cases, and RAS-pathway gene mutations (NF1, KRAS, and NRAS) were found in 19 of 27 tumors, all of which were somatic (germline control available in 19 cases). The estimated incidence in Peru was 0.19 cases per 100,000 children (<18 years old) per year, which is significantly higher than the estimated incidence in Germany (0.007 cases per 100,000 children [<18 years] per year; P < .001). Patients with nonmetastatic disease (n = 46) that were treated with a combination therapy had a 2-year progression-free survival (PFS) rate of 58% (95% CI, 44%-76%) and a 2-year overall survival rate of 71% (95% CI, 57%-87%). PFS was the highest in patients treated with chemotherapy with ifosfamide, carboplatin, and etoposide (ICE) after upfront surgery followed by radiotherapy and ICE (2-year PFS, 79% [59%-100%], n = 18). CONCLUSIONS: Primary CNS sarcoma with DICER1 mutation has an aggressive clinical course. A combination of surgery, chemotherapy, and radiotherapy seems beneficial. An underlying cancer predisposition syndrome explaining the increased incidence in Peruvian patients has not been identified so far. LAY SUMMARY: A high incidence of primary pediatric central nervous system sarcomas in the Peruvian population is described. Using sequencing technologies and DNA methylation profiling, it is confirmed that these tumors molecularly belong to the recently proposed entity "primary central nervous system sarcomas, DICER1 mutant." Unexpectedly, DICER1 mutations as well as all other defining tumor mutations (TP53 mutations and RAS-pathway mutations) were not inherited in all 19 patients where analyzation was possible. These tumors have an aggressive clinical course. Multimodal combination therapy based on surgery, ifosfamide, carboplatin, and etoposide chemotherapy, and local radiotherapy leads to superior outcomes.


Subject(s)
Central Nervous System Neoplasms , Sarcoma , Adolescent , Central Nervous System/pathology , Central Nervous System Neoplasms/drug therapy , Central Nervous System Neoplasms/genetics , Child , Child, Preschool , DEAD-box RNA Helicases/genetics , Humans , Mutation , Peru/epidemiology , Ribonuclease III/genetics , Sarcoma/drug therapy , Sarcoma/genetics
7.
Acta Neuropathol ; 144(1): 129-142, 2022 07.
Article in English | MEDLINE | ID: mdl-35660939

ABSTRACT

Glioblastoma (GBM) derived from the "stem cell" rich subventricular zone (SVZ) may constitute a therapy-refractory subgroup of tumors associated with poor prognosis. Risk stratification for these cases is necessary but is curtailed by error prone imaging-based evaluation. Therefore, we aimed to establish a robust DNA methylome-based classification of SVZ GBM and subsequently decipher underlying molecular characteristics. MRI assessment of SVZ association was performed in a retrospective training set of IDH-wildtype GBM patients (n = 54) uniformly treated with postoperative chemoradiotherapy. DNA isolated from FFPE samples was subject to methylome and copy number variation (CNV) analysis using Illumina Platform and cnAnalysis450k package. Deep next-generation sequencing (NGS) of a panel of 130 GBM-related genes was conducted (Agilent SureSelect/Illumina). Methylome, transcriptome, CNV, MRI, and mutational profiles of SVZ GBM were further evaluated in a confirmatory cohort of 132 patients (TCGA/TCIA). A 15 CpG SVZ methylation signature (SVZM) was discovered based on clustering and random forest analysis. One third of CpG in the SVZM were associated with MAB21L2/LRBA. There was a 14.8% (n = 8) discordance between SVZM vs. MRI classification. Re-analysis of these patients favored SVZM classification with a hazard ratio (HR) for OS of 2.48 [95% CI 1.35-4.58], p = 0.004 vs. 1.83 [1.0-3.35], p = 0.049 for MRI classification. In the validation cohort, consensus MRI based assignment was achieved in 62% of patients with an intraclass correlation (ICC) of 0.51 and non-significant HR for OS (2.03 [0.81-5.09], p = 0.133). In contrast, SVZM identified two prognostically distinct subgroups (HR 3.08 [1.24-7.66], p = 0.016). CNV alterations revealed loss of chromosome 10 in SVZM- and gains on chromosome 19 in SVZM- tumors. SVZM- tumors were also enriched for differentially mutated genes (p < 0.001). In summary, SVZM classification provides a novel means for stratifying GBM patients with poor prognosis and deciphering molecular mechanisms governing aggressive tumor phenotypes.


Subject(s)
Brain Neoplasms , Glioblastoma , Adaptor Proteins, Signal Transducing/genetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Brain Neoplasms/pathology , DNA Copy Number Variations , Epigenome , Eye Proteins/genetics , Glioblastoma/diagnostic imaging , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Intracellular Signaling Peptides and Proteins/genetics , Lateral Ventricles/diagnostic imaging , Lateral Ventricles/pathology , Prognosis , Retrospective Studies
8.
Acta Neuropathol ; 143(2): 263-281, 2022 02.
Article in English | MEDLINE | ID: mdl-34967922

ABSTRACT

Oligodendrogliomas are defined at the molecular level by the presence of an IDH mutation and codeletion of chromosomal arms 1p and 19q. In the past, case reports and small studies described gliomas with sarcomatous features arising from oligodendrogliomas, so called oligosarcomas. Here, we report a series of 24 IDH-mutant oligosarcomas from 23 patients forming a distinct methylation class. The tumors were recurrences from prior oligodendrogliomas or developed de novo. Precursor tumors of 12 oligosarcomas were histologically and molecularly indistinguishable from conventional oligodendrogliomas. Oligosarcoma tumor cells were embedded in a dense network of reticulin fibers, frequently showing p53 accumulation, positivity for SMA and CALD1, loss of OLIG2 and gain of H3K27 trimethylation (H3K27me3) as compared to primary lesions. In 5 oligosarcomas no 1p/19q codeletion was detectable, although it was present in the primary lesions. Copy number neutral LOH was determined as underlying mechanism. Oligosarcomas harbored an increased chromosomal copy number variation load with frequent CDKN2A/B deletions. Proteomic profiling demonstrated oligosarcomas to be highly distinct from conventional CNS WHO grade 3 oligodendrogliomas with consistent evidence for a smooth muscle differentiation. Expression of several tumor suppressors was reduced with NF1 being lost frequently. In contrast, oncogenic YAP1 was aberrantly overexpressed in oligosarcomas. Panel sequencing revealed mutations in NF1 and TP53 along with IDH1/2 and TERT promoter mutations. Survival of patients was significantly poorer for oligosarcomas as first recurrence than for grade 3 oligodendrogliomas as first recurrence. These results establish oligosarcomas as a distinct group of IDH-mutant gliomas differing from conventional oligodendrogliomas on the histologic, epigenetic, proteomic, molecular and clinical level. The diagnosis can be based on the combined presence of (a) sarcomatous histology, (b) IDH-mutation and (c) TERT promoter mutation and/or 1p/19q codeletion, or, in unresolved cases, on its characteristic DNA methylation profile.


Subject(s)
Brain Neoplasms/pathology , Isocitrate Dehydrogenase/genetics , Oligodendroglioma/pathology , Sarcoma/pathology , Adult , Aged , Brain Neoplasms/genetics , Female , Humans , Male , Middle Aged , Mutation , Oligodendroglioma/genetics , Sarcoma/genetics
9.
Mod Pathol ; 34(11): 2043-2049, 2021 11.
Article in English | MEDLINE | ID: mdl-34168281

ABSTRACT

Myxoid pleomorphic liposarcoma is a recently defined subtype of liposarcoma, which preferentially involves the mediastinum of young patients and shows mixed histological features of conventional myxoid liposarcoma and pleomorphic liposarcoma. While myxoid pleomorphic liposarcoma is known to lack the EWSR1/FUS-DDIT3 fusions characteristic of the former, additional genetic data are limited. To further understand this tumor type, we extensively examined a series of myxoid pleomorphic liposarcomas by fluorescence in situ hybridization (FISH), shallow whole genome sequencing (sWGS) and genome-wide DNA methylation profiling. The 12 tumors occurred in 6 females and 6 males, ranging from 17 to 58 years of age (mean 33 years, median 35 years), and were located in the mediastinum (n = 5), back, neck, cheek and leg, including thigh. Histologically, all cases consisted of relatively, bland, abundantly myxoid areas with a prominent capillary vasculature, admixed with much more cellular and less myxoid foci containing markedly pleomorphic spindled cells, numerous pleomorphic lipoblasts and elevated mitotic activity. Using sWGS, myxoid pleomorphic liposarcomas were found to have complex chromosomal alterations, including recurrent large chromosomal gains involving chromosomes 1, 6-8, 18-21 and losses involving chromosomes 13, 16 and 17. Losses in chromosome 13, in particular loss in 13q14 (including RB1, RCTB2, DLEU1, and ITM2B genes), were observed in 4 out of 8 cases analyzed. Additional FISH analyses confirmed the presence of a monoallelic RB1 deletion in 8/12 cases. Moreover, nuclear Rb expression was deficient in all studied cases. None showed DDIT3 gene rearrangement or MDM2 gene amplification. Using genome-wide DNA methylation profiling, myxoid pleomorphic liposarcomas and conventional pleomorphic liposarcomas formed a common methylation cluster, which segregated from conventional myxoid liposarcomas. While the morphologic, genetic and epigenetic characteristics of myxoid pleomorphic liposarcoma suggest a link with conventional pleomorphic liposarcoma, its distinctive clinical features support continued separate classification for the time being.


Subject(s)
DNA, Neoplasm/genetics , Head and Neck Neoplasms/classification , Liposarcoma, Myxoid/classification , Liposarcoma/classification , Mediastinal Neoplasms/classification , Neoplasm Proteins/genetics , Soft Tissue Neoplasms/classification , Adolescent , Adult , DNA Methylation , Epigenomics , Female , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Humans , Immunohistochemistry , In Situ Hybridization, Fluorescence , Liposarcoma/genetics , Liposarcoma/metabolism , Liposarcoma/pathology , Liposarcoma, Myxoid/genetics , Liposarcoma, Myxoid/metabolism , Liposarcoma, Myxoid/pathology , Male , Mediastinal Neoplasms/genetics , Mediastinal Neoplasms/metabolism , Mediastinal Neoplasms/pathology , Middle Aged , Molecular Biology , Neoplasm Proteins/metabolism , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/metabolism , Soft Tissue Neoplasms/pathology , Whole Genome Sequencing , Young Adult
10.
Mod Pathol ; 34(8): 1558-1569, 2021 08.
Article in English | MEDLINE | ID: mdl-33846547

ABSTRACT

Embryonal rhabdomyosarcoma (ERMS) of the uterus has recently been shown to frequently harbor DICER1 mutations. Interestingly, only rare cases of extrauterine DICER1-associated ERMS, mostly located in the genitourinary tract, have been reported to date. Our goal was to study clinicopathologic and molecular profiles of DICER1-mutant (DICER1-mut) and DICER1-wild type (DICER1-wt) ERMS in a cohort of genitourinary tumors. We collected a cohort of 17 ERMS including nine uterine (four uterine corpus and five cervix), one vaginal, and seven urinary tract tumors. DNA sequencing revealed mutations of DICER1 in 9/9 uterine ERMS. All other ERMS of our cohort were DICER1-wt. The median age at diagnosis of patients with DICER1-mut and DICER1-wt ERMS was 36 years and 5 years, respectively. Limited follow-up data (available for 15/17 patients) suggested that DICER1-mut ERMS might show a less aggressive clinical course than DICER1-wt ERMS. Histological features only observed in DICER1-mut ERMS were cartilaginous nodules (6/9 DICER1-mut ERMS), in one case accompanied by foci of ossification. Recurrent mutations identified in both DICER1-mut and DICER1-wt ERMS affected KRAS, NRAS, and TP53. Copy number analysis revealed similar structural variations with frequent gains on chromosomes 2, 3, and 8, independent of DICER1 mutation status. Unsupervised hierarchical clustering of array-based whole-genome DNA methylation data of our study cohort together with an extended methylation data set including different RMS subtypes from genitourinary and extra-genitourinary locations (n = 102), revealed a distinct cluster for DICER1-mut ERMS. Such tumors clearly segregated from the clusters of DICER1-wt ERMS, alveolar RMS, and MYOD1-mutant spindle cell and sclerosing RMS. Only one tumor, previously diagnosed as ERMS arising in the maxilla of a 6-year-old boy clustered with DICER1-mut ERMS of the uterus. Subsequent sequencing analysis identified two DICER1 mutations in the latter case. Our results suggest that DICER1-mut ERMS might qualify as a distinct subtype in future classifications of RMS.


Subject(s)
DEAD-box RNA Helicases/genetics , Rhabdomyosarcoma, Embryonal/genetics , Rhabdomyosarcoma, Embryonal/pathology , Ribonuclease III/genetics , Urogenital Neoplasms/genetics , Urogenital Neoplasms/pathology , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Humans , Infant , Male , Mutation , Young Adult
11.
Mod Pathol ; 34(12): 2122-2129, 2021 12.
Article in English | MEDLINE | ID: mdl-34312479

ABSTRACT

Undifferentiated mesenchymal tumors arising from the inner lining (intima) of large arteries are classified as intimal sarcomas (ISA) with MDM2 amplification as their molecular hallmark. Interestingly, undifferentiated pleomorphic sarcomas (UPS) of the heart have recently been suggested to represent the cardiac analog of ISA due to morphological overlap and high prevalence of MDM2 amplifications in both neoplasms. However, little is known about ISAs and cardiac UPS without MDM2 amplifications and molecular data supporting their common classification is sparse. Here, we report a series of 35 cases comprising 25 ISAs of the pulmonary artery, one ISA of the renal artery and 9 UPS of the left atrium. Tumors were analyzed utilizing the Illumina Infinium MethylationEPIC BeadChip array, enabling copy number profile generation and unsupervised DNA methylation analysis. DNA methylation patterns were investigated using t-distributed stochastic neighbor embedding (t-SNE) analysis. Histologically, all ISAs and UPS of the left atrium resembled extra-cardiac UPS. All cases exhibited highly complex karyotypes with overlapping patterns between ISA and UPS. 29/35 cases showed mutually exclusive amplifications in the cell-cycle associated oncogenes MDM2 (25/35), MDM4 (2/35), and CDK6 (2/35). We further observed recurrent co-amplifications in PDGFRA (21/35), CDK4 (15/35), TERT (11/35), HDAC9 (9/35), and CCND1 (4/35). Sporadic co-amplifications occurred in MYC, MYCN, and MET (each 1/35). The tumor suppressor CDKN2A/B was frequently deleted (10/35). Interestingly, DNA methylation profiling (t-SNE) revealed an overlap of ISA and cardiac UPS. This "ISA" methylation signature was distinct from potential histologic and molecular mimics. In conclusion, our data reveal MDM4 and CDK6 amplifications in ISAs and UPS of the left atrium, lacking MDM2 amplification. We further report novel co-amplifications of various oncogenes, which may have therapeutic implications. Finally, the genetic and epigenetic concordance of ISAs and UPS of the left atrium further supports a shared pathogenesis and common classification.


Subject(s)
Cell Cycle Proteins/genetics , Cyclin-Dependent Kinase 6/genetics , DNA Methylation/genetics , DNA, Neoplasm/genetics , Heart Neoplasms/genetics , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins/genetics , Sarcoma/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Cell Differentiation , DNA Copy Number Variations , Female , Gene Amplification , Genome-Wide Association Study , Heart Neoplasms/pathology , Humans , In Situ Hybridization, Fluorescence , Male , Middle Aged , Neoplasm Proteins/genetics , Sarcoma/pathology , Tunica Intima/pathology , Young Adult
12.
J Pathol ; 252(4): 433-440, 2020 12.
Article in English | MEDLINE | ID: mdl-32866294

ABSTRACT

The rare benign giant cell tumour of bone (GCTB) is defined by an almost unique mutation in the H3.3 family of histone genes H3-3A or H3-3B; however, the same mutation is occasionally found in primary malignant bone tumours which share many features with the benign variant. Moreover, lung metastases can occur despite the absence of malignant histological features in either the primary or metastatic lesions. Herein we investigated the genetic events of 17 GCTBs including benign and malignant variants and the methylation profiles of 122 bone tumour samples including GCTBs. Benign GCTBs possessed few somatic alterations and no other known drivers besides the H3.3 mutation, whereas all malignant tumours harboured at least one additional driver mutation and exhibited genomic features resembling osteosarcomas, including high mutational burden, additional driver event(s), and a high degree of aneuploidy. The H3.3 mutation was found to predate the development of aneuploidy. In contrast to osteosarcomas, malignant H3.3-mutated tumours were enriched for a variety of alterations involving TERT, other than amplification, suggesting telomere dysfunction in the transformation of benign to malignant GCTB. DNA sequencing of the benign metastasising GCTB revealed no additional driver alterations; polyclonal seeding in the lung was identified, implying that the metastatic lesions represent an embolic event. Unsupervised clustering of DNA methylation profiles revealed that malignant H3.3-mutated tumours are distinct from their benign counterpart, and other bone tumours. Differential methylation analysis identified CCND1, encoding cyclin D1, as a plausible cancer driver gene in these tumours because hypermethylation of the CCND1 promoter was specific for GCTBs. We report here the genomic and methylation patterns underlying the rare clinical phenomena of benign metastasising and malignant transformation of GCTB and show how the combination of genomic and epigenomic findings could potentially distinguish benign from malignant GCTBs, thereby predicting aggressive behaviour in challenging diagnostic cases. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Bone Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , DNA Methylation , Giant Cell Tumor of Bone/genetics , Mutation , Bone Neoplasms/pathology , Cell Transformation, Neoplastic/pathology , Giant Cell Tumor of Bone/pathology , Humans , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Whole Genome Sequencing
13.
Mod Pathol ; 33(3): 456-467, 2020 03.
Article in English | MEDLINE | ID: mdl-31383964

ABSTRACT

We have encountered pancreatic tumors with unique histologic features, which do not conform to any of the known tumors of the pancreas or other anatomical sites. We aimed to define their clinicopathologic features and whether they are characterized by recurrent molecular signatures. Eight cases were identified; studied histologically and by immunohistochemistry. Selected cases were also subjected to whole-exome sequencing (WES; n = 4), RNA-sequencing (n = 6), Archer FusionPlex assay (n = 5), methylation profiling using the Illumina MethylationEPIC (850k) array platform (n = 6), and TERT promoter sequencing (n = 5). Six neoplasms occurred in females. The mean age was 43 years (range: 26-75). Five occurred in the head/neck of the pancreas. All patients were treated surgically; none received neoadjuvant/adjuvant therapy. All patients are free of disease after 53 months of median follow-up (range: 8-94). The tumors were well-circumscribed, and the median size was 1.8 cm (range: 1.3-5.8). Microscopically, the unencapsulated tumors had a geographic pattern of epithelioid cell nests alternating with spindle cell fascicles. Some areas showed dense fibrosis, in which enmeshed tumor cells imparted a slit-like pattern. The predominant epithelioid cells had scant cytoplasm and round-oval nuclei with open chromatin. The spindle cells displayed irregular, hyperchromatic nuclei. Mitoses were rare. No lymph node metastases were identified. All tumors were positive for vimentin, CD99 and cytokeratin (patchy), while negative for markers of solid pseudopapillary neoplasm, neuroendocrine, acinar, myogenic/rhabdoid, vascular, melanocytic, or lymphoid differentiation, gastrointestinal stromal tumor as well as MUC4. Whole-exome sequencing revealed no recurrent somatic mutations or amplifications/homozygous deletions in any known oncogenes or tumor suppressor genes. RNA-sequencing and the Archer FusionPlex assay did not detect any recurrent likely pathogenic gene fusions. Single sample gene set enrichment analysis revealed that these tumors display a likely mesenchymal transcriptomic program. Unsupervised analysis (t-SNE) of their methylation profiles against a set of different mesenchymal neoplasms demonstrated a distinct methylation pattern. Here, we describe pancreatic neoplasms with unique morphologic/immunophenotypic features and a distinct methylation pattern, along with a lack of abnormalities in any of key genetic drivers, supporting that these neoplasms represent a novel entity with an indolent clinical course. Given their mesenchymal transcriptomic features, we propose the designation of "sclerosing epithelioid mesenchymal neoplasm" of the pancreas.


Subject(s)
Biomarkers, Tumor/genetics , Epithelioid Cells/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Stromal Cells/pathology , Terminology as Topic , Adult , Aged , Europe , Female , Genetic Predisposition to Disease , Humans , Immunohistochemistry , Japan , Male , Middle Aged , Molecular Diagnostic Techniques , Pancreatic Neoplasms/classification , Pancreatic Neoplasms/surgery , Phenotype , Retrospective Studies , Sclerosis , Treatment Outcome , United States
14.
Acta Neuropathol ; 139(1): 193-209, 2020 01.
Article in English | MEDLINE | ID: mdl-31563982

ABSTRACT

The "isomorphic subtype of diffuse astrocytoma" was identified histologically in 2004 as a supratentorial, highly differentiated glioma with low cellularity, low proliferation and focal diffuse brain infiltration. Patients typically had seizures since childhood and all were operated on as adults. To define the position of these lesions among brain tumours, we histologically, molecularly and clinically analysed 26 histologically prototypical isomorphic diffuse gliomas. Immunohistochemically, they were GFAP-positive, MAP2-, OLIG2- and CD34-negative, nuclear ATRX-expression was retained and proliferation was low. All 24 cases sequenced were IDH-wildtype. In cluster analyses of DNA methylation data, isomorphic diffuse gliomas formed a group clearly distinct from other glial/glio-neuronal brain tumours and normal hemispheric tissue, most closely related to paediatric MYB/MYBL1-altered diffuse astrocytomas and angiocentric gliomas. Half of the isomorphic diffuse gliomas had copy number alterations of MYBL1 or MYB (13/25, 52%). Gene fusions of MYBL1 or MYB with various gene partners were identified in 11/22 (50%) and were associated with an increased RNA-expression of the respective MYB-family gene. Integrating copy number alterations and available RNA sequencing data, 20/26 (77%) of isomorphic diffuse gliomas demonstrated MYBL1 (54%) or MYB (23%) alterations. Clinically, 89% of patients were seizure-free after surgery and all had a good outcome. In summary, we here define a distinct benign tumour class belonging to the family of MYB/MYBL1-altered gliomas. Isomorphic diffuse glioma occurs both in children and adults, has a concise morphology, frequent MYBL1 and MYB alterations and a specific DNA methylation profile. As an exclusively histological diagnosis may be very challenging and as paediatric MYB/MYBL1-altered diffuse astrocytomas may have the same gene fusions, we consider DNA methylation profiling very helpful for their identification.


Subject(s)
Brain Neoplasms/genetics , Glioma/genetics , Proto-Oncogene Proteins c-myb/genetics , Proto-Oncogene Proteins/genetics , Trans-Activators/genetics , Adult , Brain Neoplasms/pathology , Child , Child, Preschool , DNA Copy Number Variations , DNA Methylation , Female , Glioma/pathology , Humans , Male , Middle Aged , Oncogene Fusion , Young Adult
15.
Ann Diagn Pathol ; 44: 151434, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31887709

ABSTRACT

Kaposiform hemangioendothelioma (KHE) is a locally aggressive vascular condition of childhood and is clinicopathologically related to tufted angioma (TA), a benign skin lesion. Due to their rarity molecular data are scarce. We investigated 7 KHE and 3 TA by comprehensive mutational analysis and genome-wide methylation profiling and compared the clustering, also with vascular malformations. Lesions were from 7 females and 3 males. The age range was 2 months to 9 years with a median of 10 months. KHEs arose in the soft tissue of the thigh (n = 2), retroperitoneum (n = 1), thoracal/abdominal (n = 1), supraclavicular (n = 1) and neck (n = 1). One patient presented with multiple lesions without further information. Two patients developed a Kasabach-Merritt phenomenon. TAs originated in the skin of the shoulder (n = 2) and nose/forehead (n = 1). Of the 5 KHEs and 2 TAs investigated by DNA sequencing, one TA showed a hot spot mutation in NRAS, and one KHE a mutation in RAD50. Unsupervised hierarchical clustering analysis indicated a common methylation pattern of KHEs and TAs, which separated from the homogeneous methylation pattern of vascular malformations. In conclusion, methylation profiling provides further evidence for KHEs and TAs potentially forming a spectrum of one entity. Using next generation sequencing, heterogeneous mutations were found in a subset of cases (2/7) without the presence of GNA14 mutations, previously reported in KHE and TA.


Subject(s)
Hemangioendothelioma/genetics , Hemangioma/genetics , Kasabach-Merritt Syndrome/genetics , Sarcoma, Kaposi/genetics , Skin Neoplasms/genetics , Child , Child, Preschool , DNA Methylation , Epigenomics , Female , Genetic Testing , Hemangioendothelioma/pathology , Hemangioma/pathology , High-Throughput Nucleotide Sequencing , Humans , Infant , Kasabach-Merritt Syndrome/pathology , Male , Mutation , Sarcoma, Kaposi/pathology , Sequence Analysis, DNA , Skin/pathology , Skin Neoplasms/pathology
16.
Cancer ; 125(20): 3514-3525, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31355930

ABSTRACT

Patients who are diagnosed with osteosarcoma (OS) today receive the same therapy that patients have received over the last 4 decades. Extensive efforts to identify more effective or less toxic regimens have proved disappointing. As we enter a postgenomic era in which we now recognize OS not as a cancer of mutations but as one defined by p53 loss, chromosomal complexity, copy number alteration, and profound heterogeneity, emerging threads of discovery leave many hopeful that an improving understanding of biology will drive discoveries that improve clinical care. Under the organization of the Bone Tumor Biology Committee of the Children's Oncology Group, a team of clinicians and scientists sought to define the state of the science and to identify questions that, if answered, have the greatest potential to drive fundamental clinical advances. Having discussed these questions in a series of meetings, each led by invited experts, we distilled these conversations into a series of seven Provocative Questions. These include questions about the molecular events that trigger oncogenesis, the genomic and epigenomic drivers of disease, the biology of lung metastasis, research models that best predict clinical outcomes, and processes for translating findings into clinical trials. Here, we briefly present each Provocative Question, review the current scientific evidence, note the immediate opportunities, and speculate on the impact that answered questions might have on the field. We do so with an intent to provide a framework around which investigators can build programs and collaborations to tackle the hardest problems and to establish research priorities for those developing policies and providing funding.


Subject(s)
Epigenomics , Genomics , Osteosarcoma/therapy , Translational Research, Biomedical , Child , Humans , Mutation/genetics , Osteosarcoma/epidemiology , Osteosarcoma/genetics , Osteosarcoma/pathology , Proteomics , Tumor Suppressor Protein p53/genetics
17.
Acta Neuropathol ; 138(5): 827-835, 2019 11.
Article in English | MEDLINE | ID: mdl-31278449

ABSTRACT

Molecular markers have become pivotal in brain tumor diagnostics. Mutational analyses by targeted next-generation sequencing of DNA and array-based DNA methylation assessment with copy number analyses are increasingly being used in routine diagnostics. However, the broad variety of gene fusions occurring in brain tumors is marginally covered by these technologies and often only assessed by targeted assays. Here, we assessed the feasibility and clinical value of investigating gene fusions in formalin-fixed paraffin-embedded (FFPE) tumor tissues by next-generation mRNA sequencing in a routine diagnostic setting. After establishment and optimization of a workflow applicable in a routine setting, prospective diagnostic application in a neuropathology department for 26 months yielded relevant fusions in 66 out of 101 (65%) analyzed cases. In 43 (43%) cases, the fusions were of decisive diagnostic relevance and in 40 (40%) cases the fusion genes rendered a druggable target. A major strength of this approach was its ability to detect fusions beyond the canonical alterations for a given entity, and the unbiased search for any fusion event in cases with uncertain diagnosis and, thus, uncertain spectrum of expected fusions. This included both rare variants of established fusions which had evaded prior targeted analyses as well as the detection of previously unreported fusion events. While the impact of fusion detection on diagnostics is highly relevant, it is especially the detection of "druggable" fusions which will most likely provide direct benefit to the patients. The wider application of this approach for unbiased fusion identification therefore promises to be a major advance in identifying alterations with immediate impact on patient care.


Subject(s)
Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Mutation/genetics , Sequence Analysis, RNA , Base Sequence , DNA Mutational Analysis/methods , Gene Fusion/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Neuropathology/methods , Paraffin Embedding/methods
18.
Acta Neuropathol ; 137(5): 837-846, 2019 05.
Article in English | MEDLINE | ID: mdl-30759284

ABSTRACT

Papillary glioneuronal tumor (PGNT) is a WHO-defined brain tumor entity that poses a major diagnostic challenge. Recently, SLC44A1-PRKCA fusions have been described in PGNT. We subjected 28 brain tumors from different institutions histologically diagnosed as PGNT to molecular and morphological analysis. Array-based methylation analysis revealed that 17/28 tumors exhibited methylation profiles typical for other tumor entities, mostly dysembryoplastic neuroepithelial tumor and hemispheric pilocytic astrocytoma. Conversely, 11/28 tumors exhibited a unique profile, thus constituting a distinct methylation class PGNT. By screening the extended Heidelberg cohort containing over 25,000 CNS tumors, we identified three additional tumors belonging to this methylation cluster but originally histologically diagnosed otherwise. RNA sequencing for the detection of SLC44A1-PRKCA fusions could be performed on 19 of the tumors, 10 of them belonging to the methylation class PGNT. In two additional cases, SLC44A1-PRKCA fusions were confirmed by FISH. We detected fusions involving PRKCA in all cases of this methylation class with material available for analyses: the canonical SLC44A1-PRKCA fusion was observed in 11/12 tumors, while the remaining case exhibited a NOTCH1-PRKCA fusion. Neither of the fusions was found in the tumors belonging to other methylation classes. Our results point towards a high misclassification rate of the morphological diagnosis PGNT and clearly demonstrate the necessity of molecular analyses. PRKCA fusions are highly diagnostic for PGNT, and detection by RNA sequencing enables the identification of rare fusion partners. Methylation analysis recognizes a unique methylation class PGNT irrespective of the nature of the PRKCA fusion.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Neoplasms, Neuroepithelial/genetics , Neoplasms, Neuroepithelial/metabolism , Protein Kinase C-alpha/genetics , Protein Kinase C-alpha/metabolism , Adolescent , Adult , Antigens, CD/genetics , Antigens, CD/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain/metabolism , Brain/pathology , Brain Neoplasms/pathology , Child , Cohort Studies , Female , Gene Fusion , Humans , Male , Middle Aged , Neoplasms, Neuroepithelial/pathology , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , Site-Specific DNA-Methyltransferase (Adenine-Specific)
19.
Eur J Haematol ; 103(4): 410-416, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31338887

ABSTRACT

BACKGROUND: Causality between hepatitis B virus (HBV) infection and diffuse large B-cell lymphoma (DLBCL) was reported in various studies. However, the implication of different virological serum markers of HBV infection in patients with both HBV infection and DLBCL is not fully understood. The aim of this study was to investigate the impact of HBV markers on overall survival (OS) and progression-free survival (PFS) in patients with both HBV infection and DLBCL. METHODS: In this study, patients (n = 40) diagnosed with both HBV infection and DLBCL were identified between 2000 and 2017. Six patients with hepatitis C virus (HCV) and/or human immunodeficiency virus (HIV) co-infection were excluded from this study. We retrospectively analyzed patients' demographic characteristics, treatment, and the prognostic impact of different HBV markers at first diagnosis of DLBCL (HBsAg, anti-HBs, HBeAg, anti-HBe, and HBV-DNA) on OS and PFS. RESULTS: The majority of patients (n = 21, 62%) had advanced disease stage (III/IV) at diagnosis. In the first-line therapy, 24 patients (70%) were treated with R-CHOP regimen (rituximab, cyclophosphamide, hydroxydaunorubicin, vincristine, and prednisolone). HBeAg positive patients had a trend toward inferior OS and PFS compared with HBeAg negative patients. Anti-HBe positive patients had a statistically significant better OS and PFS compared with anti-HBe negative group (both P < .0001). Viremia with HBV-DNA ≥ 2 × 107 IU/L had a significant negative impact on OS and PFS (both P < .0001). CONCLUSION: High activity of viral replication is associated with a poor survival outcome of patients with both HBV infection and DLBCL.


Subject(s)
Biomarkers , Hepatitis B virus , Hepatitis B/blood , Hepatitis B/complications , Lymphoma, Large B-Cell, Diffuse/blood , Lymphoma, Large B-Cell, Diffuse/complications , Adult , Aged , Aged, 80 and over , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cyclophosphamide/adverse effects , Cyclophosphamide/therapeutic use , Doxorubicin/adverse effects , Doxorubicin/therapeutic use , Female , Hepatitis B/diagnosis , Hepatitis B Antibodies/blood , Hepatitis B Surface Antigens , Hepatitis B e Antigens/blood , Humans , Lymphoma, Large B-Cell, Diffuse/diagnosis , Lymphoma, Large B-Cell, Diffuse/therapy , Male , Middle Aged , Neoplasm Staging , Prednisone/adverse effects , Prednisone/therapeutic use , Prognosis , Rituximab/adverse effects , Rituximab/therapeutic use , Treatment Outcome , Vincristine/adverse effects , Vincristine/therapeutic use
20.
Ann Diagn Pathol ; 41: 102-105, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31202195

ABSTRACT

Based on histological findings, calcifying fibrous tumor (CFT) may be a late (burned out) stage of inflammatory myofibroblastic tumor (IMT). This concept, however, has not been proven by molecular means. Five CFTs were analyzed for IMT-related rearrangements in ALK, ROS1 and RET using fluorescence in situ hybridization (FISH). Additionally, genome-wide methylation patterns were investigated and compared with IMT (n = 7), leiomyoma (n = 7), angioleiomyoma (n = 9), myopericytoma (n = 7) and reactive soft tissue lesions (n = 10) using unsupervised hierarchical cluster analysis and t distributed stochastic neighbor embedding. CFT patients, 4 females and 1 male, had a median age of 20 years ranging from 7 to 43 years. Two patients were younger than 18 years old. The tumors originated in the abdomen (n = 4) and axilla (n = 1). Histologically, all lesions were (multi) nodular and hypocellular consisting of bland looking (myo)fibroblasts embedded in a collagenous matrix with calcifications. FISH analysis brought up negative results for ALK, RET and ROS1 rearrangements. However, genome-wide methylation analysis revealed overlapping methylation patterns of CFT and IMT forming a distinct homogeneous methylation cluster with exception of one case clustering with myopericytoma/angioleiomyoma. In conclusion, DNA methylation profiling supports the concept that CFT and IMT represent both ends of a spectrum of one entity with CFT being the burn out stage of IMT.


Subject(s)
Granuloma, Plasma Cell/genetics , Neoplasms, Fibrous Tissue/genetics , Abdominal Neoplasms/genetics , Abdominal Neoplasms/pathology , Adolescent , Adult , Axilla/pathology , Calcinosis/genetics , Calcinosis/pathology , Child , DNA Methylation , Epigenesis, Genetic , Female , Genome-Wide Association Study , Granuloma, Plasma Cell/pathology , Humans , Male , Neoplasms, Fibrous Tissue/pathology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL