Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 93
Filter
1.
Basic Res Cardiol ; 119(3): 371-395, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38700707

ABSTRACT

Ascending thoracic aortic aneurysm (ATAA) remains a significant medical concern, with its asymptomatic nature posing diagnostic and monitoring challenges, thereby increasing the risk of aortic wall dissection and rupture. Current management of aortic repair relies on an aortic diameter threshold. However, this approach underestimates the complexity of aortic wall disease due to important knowledge gaps in understanding its underlying pathologic mechanisms.Since traditional risk factors cannot explain the initiation and progression of ATAA leading to dissection, local vascular factors such as extracellular matrix (ECM) and vascular smooth muscle cells (VSMCs) might harbor targets for early diagnosis and intervention. Derived from diverse embryonic lineages, VSMCs exhibit varied responses to genetic abnormalities that regulate their contractility. The transition of VSMCs into different phenotypes is an adaptive response to stress stimuli such as hemodynamic changes resulting from cardiovascular disease, aging, lifestyle, and genetic predisposition. Upon longer exposure to stress stimuli, VSMC phenotypic switching can instigate pathologic remodeling that contributes to the pathogenesis of ATAA.This review aims to illuminate the current understanding of cellular and molecular characteristics associated with ATAA and dissection, emphasizing the need for a more nuanced comprehension of the impaired ECM-VSMC network.


Subject(s)
Aortic Aneurysm, Thoracic , Aortic Dissection , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Humans , Aortic Aneurysm, Thoracic/pathology , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/metabolism , Aortic Aneurysm, Thoracic/physiopathology , Aortic Dissection/pathology , Aortic Dissection/genetics , Aortic Dissection/metabolism , Animals , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/metabolism , Aorta, Thoracic/pathology , Aorta, Thoracic/physiopathology , Vascular Remodeling , Extracellular Matrix/pathology , Extracellular Matrix/metabolism , Phenotype
2.
Arterioscler Thromb Vasc Biol ; 43(9): 1700-1712, 2023 09.
Article in English | MEDLINE | ID: mdl-37409530

ABSTRACT

BACKGROUND: Platelets and neutrophils are the first blood cells accumulating at sites of arterial thrombus formation, and both cell types contribute to the pathology of thrombotic events. We aimed to identify key interaction mechanisms between these cells using microfluidic approaches. METHODS: Whole-blood perfusion was performed over a collagen surface at arterial shear rate. Platelet and leukocyte (in majority neutrophil) activation were microscopically visualized using fluorescent markers. The contributions of platelet-adhesive receptors (integrin, P-selectin, CD40L) and chemokines were studied by using inhibitors or antibodies and using blood from patients with GT (Glanzmann thrombasthenia) lacking platelet-expressed αIIbß3. RESULTS: We observed (1) an unknown role of activated platelet integrin αIIbß3 preventing leukocyte adhesion, which was overcome by short-term flow disturbance provoking massive adhesion; (2) that platelet-expressed CD40L controls the crawling pattern and thrombus fidelity of the cells on a thrombus; (3) that continued secretion of platelet substances promotes activation of identified neutrophils, as assessed by (fMLP [N-formylmethionyl-leucyl-phenylalanine, a potent chemotactic agent and leukocyte activator] induced) [Ca2+]i rises and antigen expression; (4) and that platelet-released chemokines activate the adhered cells in the order of CXCL7>CCL5>CXCL4. Furthermore, postsilencing of the platelets in a thrombus suppressed the leukocyte activation. However, the leukocytes on thrombi did no more than limitedly form neutrophil extracellular traps, unless stimulated with phorbol ester or lipopolysaccharide. CONCLUSIONS: Together, these findings reveal a multifaceted regulation of adhesion and activation of neutrophils by platelets in a thrombus, with a balanced role of several platelet-adhesive receptors and a promoting role of platelet-released substances. This multivalent nature of neutrophil-thrombus interactions offers novel prospects for pharmacological intervention.


Subject(s)
Arteries , Blood Platelets , Chemokines , Neutrophil Activation , Neutrophils , Thrombosis , Blood Platelets/immunology , Blood Platelets/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Chemokines/metabolism , Thrombosis/immunology , CD40 Ligand , Neutrophils/immunology , Neutrophils/metabolism , Cell Adhesion , Humans
3.
Eur Heart J ; 44(14): 1216-1230, 2023 04 07.
Article in English | MEDLINE | ID: mdl-36478058

ABSTRACT

The advent of single-cell biology opens a new chapter for understanding human biological processes and for diagnosing, monitoring, and treating disease. This revolution now reaches the field of cardiovascular disease (CVD). New technologies to interrogate CVD samples at single-cell resolution are allowing the identification of novel cell communities that are important in shaping disease development and direct towards new therapeutic strategies. These approaches have begun to revolutionize atherosclerosis pathology and redraw our understanding of disease development. This review discusses the state-of-the-art of single-cell analysis of atherosclerotic plaques, with a particular focus on human lesions, and presents the current resolution of cellular subpopulations and their heterogeneity and plasticity in relation to clinically relevant features. Opportunities and pitfalls of current technologies as well as the clinical impact of single-cell technologies in CVD patient care are highlighted, advocating for multidisciplinary and international collaborative efforts to join the cellular dots of CVD.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Plaque, Atherosclerotic , Humans , Atherosclerosis/pathology , Plaque, Atherosclerotic/pathology
4.
Cell Mol Life Sci ; 79(10): 512, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36094626

ABSTRACT

To fulfil its orchestration of immune cell trafficking, a network of chemokines and receptors developed that capitalizes on specificity, redundancy, and functional selectivity. The discovery of heteromeric interactions in the chemokine interactome has expanded the complexity within this network. Moreover, some inflammatory mediators, not structurally linked to classical chemokines, bind to chemokine receptors and behave as atypical chemokines (ACKs). We identified macrophage migration inhibitory factor (MIF) as an ACK that binds to chemokine receptors CXCR2 and CXCR4 to promote atherogenic leukocyte recruitment. Here, we hypothesized that chemokine-chemokine interactions extend to ACKs and that MIF forms heterocomplexes with classical chemokines. We tested this hypothesis by using an unbiased chemokine protein array. Platelet chemokine CXCL4L1 (but not its variant CXCL4 or the CXCR2/CXCR4 ligands CXCL8 or CXCL12) was identified as a candidate interactor. MIF/CXCL4L1 complexation was verified by co-immunoprecipitation, surface plasmon-resonance analysis, and microscale thermophoresis, also establishing high-affinity binding. We next determined whether heterocomplex formation modulates inflammatory/atherogenic activities of MIF. Complex formation was observed to inhibit MIF-elicited T-cell chemotaxis as assessed by transwell migration assay and in a 3D-matrix-based live cell-imaging set-up. Heterocomplexation also blocked MIF-triggered migration of microglia in cortical cultures in situ, as well as MIF-mediated monocyte adhesion on aortic endothelial cell monolayers under flow stress conditions. Of note, CXCL4L1 blocked binding of Alexa-MIF to a soluble surrogate of CXCR4 and co-incubation with CXCL4L1 attenuated MIF responses in HEK293-CXCR4 transfectants, indicating that complex formation interferes with MIF/CXCR4 pathways. Because MIF and CXCL4L1 are platelet-derived products, we finally tested their role in platelet activation. Multi-photon microscopy, FLIM-FRET, and proximity-ligation assay visualized heterocomplexes in platelet aggregates and in clinical human thrombus sections obtained from peripheral artery disease (PAD) in patients undergoing thrombectomy. Moreover, heterocomplexes inhibited MIF-stimulated thrombus formation under flow and skewed the lamellipodia phenotype of adhering platelets. Our study establishes a novel molecular interaction that adds to the complexity of the chemokine interactome and chemokine/receptor-network. MIF/CXCL4L1, or more generally, ACK/CXC-motif chemokine heterocomplexes may be target structures that can be exploited to modulate inflammation and thrombosis.


Subject(s)
Atherosclerosis , Macrophage Migration-Inhibitory Factors , Thrombosis , Atherosclerosis/metabolism , HEK293 Cells , Humans , Inflammation/metabolism , Intramolecular Oxidoreductases , Macrophage Migration-Inhibitory Factors/metabolism , Platelet Factor 4 , Receptors, Interleukin-8B/chemistry , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism
5.
Liver Int ; 42(5): 1185-1203, 2022 05.
Article in English | MEDLINE | ID: mdl-35129269

ABSTRACT

BACKGROUND AND AIMS: Leukocyte infiltration is a hallmark of hepatic inflammation. The Junctional Adhesion Molecule A (JAM-A) is a crucial regulator of leukocyte extravasation and is upregulated in human viral fibrosis. Reduced shear stress within hepatic sinusoids and the specific phenotype of liver sinusoidal endothelial cells (LSEC) cumulate in differing adhesion characteristics during liver fibrosis. The aim of this study was to define the functional role of cell-specific adhesion molecule JAM-A during hepatic fibrogenesis. METHODS: Complete, conditional (intestinal epithelial; endothelial) and bone marrow chimeric Jam-a knockout animals and corresponding C57Bl/6 wild-type animals were treated with carbon tetrachloride (CCl4 , 6 weeks). For functional analyses of JAM-A, comprehensive in vivo studies, co-culture models and flow-based adhesion assays were performed. RESULTS: Complete and bone marrow-derived Jam-a-/- animals showed aggravated fibrosis with increased non-sinusoidal, perivascular accumulation of CD11b+ F4/80+ monocyte-derived macrophages in contrast to wild-type mice. Despite being associated with disturbed epithelial barrier function, an intestinal epithelial Jam-a knockout did not affect fibrogenesis. In endothelial-specific Jam-a-/- animals, liver fibrosis was aggravated alongside sinusoid capillarization and hepatic stellate cell (HSC) activation. HSC activation is induced via Jam-a-/- LSEC-derived secretion of soluble factors. Sinusoid CD31 expression and hedgehog gene signalling were increased, but leukocyte infiltration and adhesion to LSECs remained unaffected. CONCLUSIONS: Our models decipher cell-specific JAM-A to exert crucial functions during hepatic fibrogenesis. JAM-A on bone marrow-derived cells regulates non-sinusoidal vascular immune cell recruitment, while endothelial JAM-A controls liver sinusoid capillarization and HSC quiescence.


Subject(s)
Junctional Adhesion Molecule A , Animals , Endothelial Cells/metabolism , Fibrosis , Hedgehog Proteins/metabolism , Hepatic Stellate Cells/metabolism , Humans , Junctional Adhesion Molecule A/metabolism , Liver/pathology , Liver Cirrhosis/pathology , Mice , Mice, Inbred C57BL
6.
Int J Mol Sci ; 23(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35054772

ABSTRACT

Platelet factor 4 (CXCL4) is a chemokine abundantly stored in platelets. Upon injury and during atherosclerosis, CXCL4 is transported through the vessel wall where it modulates the function of vascular smooth muscle cells (VSMCs) by affecting proliferation, migration, gene expression and cytokine release. Variant CXCL4L1 is distinct from CXCL4 in function and expression pattern, despite a minor three-amino acid difference. Here, the effects of CXCL4 and CXCL4L1 on the phenotype and function of human VSMCs were compared in vitro. VSMCs were found to constitutively express CXCL4L1 and only exogenously added CXCL4 was internalized by VSMCs. Pre-treatment with heparin completely blocked CXCL4 uptake. A role of the putative CXCL4 receptors CXCR3 and DARC in endocytosis was excluded, but LDL receptor family members appeared to be involved in the uptake of CXCL4. Incubation of VSMCs with both CXCL4 and CXCL4L1 resulted in decreased expression of contractile marker genes and increased mRNA levels of KLF4 and NLRP3 transcription factors, yet only CXCL4 stimulated proliferation and calcification of VSMCs. In conclusion, CXCL4 and CXCL4L1 both modulate gene expression, yet only CXCL4 increases the division rate and formation of calcium-phosphate crystals in VSMCs. CXCL4 and CXCL4L1 may play distinct roles during vascular remodeling in which CXCL4 induces proliferation and calcification while endogenously expressed CXCL4L1 governs cellular homeostasis. The latter notion remains a subject for future investigation.


Subject(s)
Calcinosis , Cell Proliferation , Muscle Contraction , Muscle, Smooth, Vascular/metabolism , Platelet Factor 4/physiology , Cells, Cultured , Gene Expression Regulation , Humans , Kruppel-Like Factor 4/genetics , Muscle, Smooth, Vascular/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Platelet Factor 4/metabolism
7.
J Biol Chem ; 295(42): 14367-14378, 2020 10 16.
Article in English | MEDLINE | ID: mdl-32817341

ABSTRACT

Ticks, as blood-sucking parasites, have developed a complex strategy to evade and suppress host immune responses during feeding. The crucial part of this strategy is expression of a broad family of salivary proteins, called Evasins, to neutralize chemokines responsible for cell trafficking and recruitment. However, structural information about Evasins is still scarce, and little is known about the structural determinants of their binding mechanism to chemokines. Here, we studied the structurally uncharacterized Evasin-4, which neutralizes a broad range of CC-motif chemokines, including the chemokine CC-motif ligand 5 (CCL5) involved in atherogenesis. Crystal structures of Evasin-4 and E66S CCL5, an obligatory dimeric variant of CCL5, were determined to a resolution of 1.3-1.8 Å. The Evasin-4 crystal structure revealed an L-shaped architecture formed by an N- and C-terminal subdomain consisting of eight ß-strands and an α-helix that adopts a substantially different position compared with closely related Evasin-1. Further investigation into E66S CCL5-Evasin-4 complex formation with NMR spectroscopy showed that residues of the N terminus are involved in binding to CCL5. The peptide derived from the N-terminal region of Evasin-4 possessed nanomolar affinity to CCL5 and inhibited CCL5 activity in monocyte migration assays. This suggests that Evasin-4 derivatives could be used as a starting point for the development of anti-inflammatory drugs.


Subject(s)
Chemokine CCL5/antagonists & inhibitors , Salivary Proteins and Peptides/chemistry , Ticks/metabolism , Amino Acid Sequence , Animals , Cell Line , Cell Movement/drug effects , Chemokine CCL5/metabolism , Crystallography, X-Ray , Humans , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , Salivary Proteins and Peptides/genetics , Salivary Proteins and Peptides/metabolism
8.
Int J Mol Sci ; 22(14)2021 Jul 08.
Article in English | MEDLINE | ID: mdl-34298951

ABSTRACT

The chemokines CCL5 and CXCL4 are deposited by platelets onto endothelial cells, inducing monocyte arrest. Here, the fate of CCL5 and CXCL4 after endothelial deposition was investigated. Human umbilical vein endothelial cells (HUVECs) and EA.hy926 cells were incubated with CCL5 or CXCL4 for up to 120 min, and chemokine uptake was analyzed by microscopy and by ELISA. Intracellular calcium signaling was visualized upon chemokine treatment, and monocyte arrest was evaluated under laminar flow. Whereas CXCL4 remained partly on the cell surface, all of the CCL5 was internalized into endothelial cells. Endocytosis of CCL5 and CXCL4 was shown as a rapid and active process that primarily depended on dynamin, clathrin, and G protein-coupled receptors (GPCRs), but not on surface proteoglycans. Intracellular calcium signals were increased after chemokine treatment. Confocal microscopy and ELISA measurements in cell organelle fractions indicated that both chemokines accumulated in the nucleus. Internalization did not affect leukocyte arrest, as pretreatment of chemokines and subsequent washing did not alter monocyte adhesion to endothelial cells. Endothelial cells rapidly and actively internalize CCL5 and CXCL4 by clathrin and dynamin-dependent endocytosis, where the chemokines appear to be directed to the nucleus. These findings expand our knowledge of how chemokines attract leukocytes to sites of inflammation.


Subject(s)
Cell Nucleus/metabolism , Chemokine CCL5/metabolism , Endothelial Cells/metabolism , Platelet Factor 4/metabolism , Active Transport, Cell Nucleus , Cell Line , Humans
9.
J Biol Chem ; 294(33): 12370-12379, 2019 08 16.
Article in English | MEDLINE | ID: mdl-31235521

ABSTRACT

Chemokines are a group of chemotaxis proteins that regulate cell trafficking and play important roles in immune responses and inflammation. Ticks are blood-sucking parasites that secrete numerous immune-modulatory agents in their saliva to evade host immune responses. Evasin-3 is a small salivary protein that belongs to a class of chemokine-binding proteins isolated from the brown dog tick, Rhipicephalus sanguineus Evasin-3 has been shown to have a high affinity for chemokines CXCL1 and CXCL8 and to diminish inflammation in mice. In the present study, solution NMR spectroscopy was used to investigate the structure of Evasin-3 and its CXCL8-Evasin-3 complex. Evasin-3 is found to disrupt the glycosaminoglycan-binding site of CXCL8 and inhibit the interaction of CXCL8 with CXCR2. Structural data were used to design two novel CXCL8-binding peptides. The linear tEv3 17-56 and cyclic tcEv3 16-56 dPG Evasin-3 variants were chemically synthesized by solid-phase peptide synthesis. The affinity of these newly synthesized variants to CXCL8 was measured by surface plasmon resonance biosensor analysis. The Kd values of tEv3 17-56 and tcEv3 16-56 dPG were 27 and 13 nm, respectively. Both compounds effectively inhibited CXCL8-induced migration of polymorphonuclear neutrophils. The present results suggest utility of synthetic Evasin-3 variants as scaffolds for designing and fine-tuning new chemokine-binding agents that suppress immune responses and inflammation.


Subject(s)
Arthropod Proteins , Glycosaminoglycans , Neutrophils/metabolism , Receptors, Interleukin-8B , Rhipicephalus sanguineus/chemistry , Salivary Proteins and Peptides , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/metabolism , Cell Movement , Dogs , Glycosaminoglycans/chemistry , Glycosaminoglycans/metabolism , Humans , Protein Structure, Quaternary , Receptors, Interleukin-8B/chemistry , Receptors, Interleukin-8B/metabolism , Salivary Proteins and Peptides/chemistry , Salivary Proteins and Peptides/metabolism
10.
Bioconjug Chem ; 31(3): 948-955, 2020 03 18.
Article in English | MEDLINE | ID: mdl-32077689

ABSTRACT

Atherosclerosis is one of the leading causes of mortality in developed and developing countries. The onset of atherosclerosis development is accompanied by overexpression of several inflammatory chemokines. Neutralization of these chemokines by chemokine-binding agents attenuates atherosclerosis progression. Here, we studied structural binding features of the tick protein Evasin-3 to chemokine (C-X-C motif) ligand 1 (CXCL1). We showed that Evasin-3-bound CXCL1 is unable to activate the CXCR2 receptor, but retains affinity to glycosaminoglycans. This observation was exploited to detect inflammation by visualizing a group of closely related CXC-type chemokines deposited on cell walls in human endothelial cells and murine carotid arteries by a fluorescent Evasin-3 conjugate. This work highlights the applicability of tick-derived chemokine-binding conjugates as a platform for the development of new agents for inflammation imaging.


Subject(s)
Arthropod Proteins/metabolism , Carotid Artery Diseases/diagnostic imaging , Chemokines, CXC/metabolism , Endothelium, Vascular/metabolism , Ticks , Animals , Carotid Artery Diseases/metabolism , Glycosaminoglycans/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammation/diagnostic imaging , Inflammation/metabolism , Mice
11.
Arterioscler Thromb Vasc Biol ; 39(4): 583-592, 2019 04.
Article in English | MEDLINE | ID: mdl-30760014

ABSTRACT

With the incidence and impact of atherosclerotic cardiovascular disease and its clinical manifestations still rising, therapeutic options that target the causal mechanisms of this disorder are highly desired. Since the CANTOS trial (Canakinumab Antiinflammatory Thrombosis Outcome Study) has demonstrated that lowering inflammation can be beneficial, focusing on mechanisms underlying inflammation, for example, leukocyte recruitment, is feasible. Being key orchestrators of leukocyte trafficking, chemokines have not lost their attractiveness as therapeutic targets, despite the difficult road to drug approval thus far. Still, innovative therapeutic approaches are being developed, paving the road towards the first chemokine-based therapeutic against inflammation. In this overview, recent developments for chemokines and for the chemokine-like factor MIF (macrophage migration inhibitory factor) will be discussed.


Subject(s)
Cardiovascular Diseases/drug therapy , Chemokines/antagonists & inhibitors , Molecular Targeted Therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Atherosclerosis/physiopathology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Chemokines/physiology , Chemotaxis, Leukocyte , Clinical Trials as Topic , Forecasting , Humans , Inflammation/complications , Inflammation/drug therapy , Intramolecular Oxidoreductases/antagonists & inhibitors , Intramolecular Oxidoreductases/physiology , Macrophage Migration-Inhibitory Factors/antagonists & inhibitors , Macrophage Migration-Inhibitory Factors/physiology , Multicenter Studies as Topic , Receptors, Chemokine/antagonists & inhibitors , Receptors, Chemokine/physiology , Therapies, Investigational/methods , Translational Research, Biomedical
12.
Arterioscler Thromb Vasc Biol ; 38(1): 40-48, 2018 01.
Article in English | MEDLINE | ID: mdl-29191926

ABSTRACT

OBJECTIVE: The junctional adhesion molecule A (JAM-A) is physiologically located in interendothelial tight junctions and focally redistributes to the luminal surface of blood vessels under abnormal shear and flow conditions accompanying atherosclerotic lesion development. Therefore, JAM-A was evaluated as a target for molecularly targeted ultrasound imaging of transient endothelial dysfunction under acute blood flow variations. APPROACH AND RESULTS: Flow-dependent endothelial dysfunction was induced in apolipoprotein E-deficient mice (n=43) by carotid partial ligation. JAM-A expression was investigated by molecular ultrasound using antibody-targeted poly(n-butyl cyanoacrylate) microbubbles and validated with immunofluorescence. Flow disturbance and arterial remodeling were assessed using functional ultrasound. Partial ligation led to an immediate drop in perfusion at the ligated side and a direct compensatory increase at the contralateral side. This was accompanied by a strongly increased JAM-A expression and JAM-A-targeted microbubbles binding at the partially ligated side and by a moderate and temporary increase in the contralateral artery (≈14× [P<0.001] and ≈5× [P<0.001] higher than control, respectively), both peaking after 2 weeks. Subsequently, although JAM-A expression and JAM-A-targeted microbubbles binding persisted at a higher level at the partially ligated side, it completely normalized within 4 weeks at the contralateral side. CONCLUSIONS: Temporary blood flow variations induce endothelial rearrangement of JAM-A, which can be visualized using JAM-A-targeted microbubbles. Thus, JAM-A may be considered as a marker of acute endothelial activation and dysfunction. Its imaging may facilitate the early detection of cardiovascular risk areas, and it enables the therapeutic prevention of their progression toward an irreversible pathological state.


Subject(s)
Carotid Arteries/diagnostic imaging , Carotid Stenosis/diagnostic imaging , Cell Adhesion Molecules/metabolism , Endothelium, Vascular/diagnostic imaging , Molecular Imaging/methods , Receptors, Cell Surface/metabolism , Ultrasonography , Animals , Biomarkers/metabolism , Carotid Arteries/metabolism , Carotid Arteries/pathology , Carotid Arteries/physiopathology , Carotid Stenosis/metabolism , Carotid Stenosis/pathology , Carotid Stenosis/physiopathology , Cell Adhesion Molecules/genetics , Cells, Cultured , Contrast Media/administration & dosage , Disease Models, Animal , Enbucrilate/administration & dosage , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Endothelium, Vascular/physiopathology , Fluorescent Antibody Technique , Humans , Inflammation Mediators/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Mice, Knockout, ApoE , Microbubbles , Receptors, Cell Surface/genetics , Regional Blood Flow , Time Factors , Vascular Remodeling
13.
Eur Heart J ; 44(8): 633-635, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36477466
14.
J Cell Mol Med ; 21(8): 1523-1531, 2017 08.
Article in English | MEDLINE | ID: mdl-28211187

ABSTRACT

Platelets play an important role in the pathogenesis of vascular remodelling after injury. Junctional adhesion molecule A (JAM-A) was recently described to regulate platelet activation. Specific deletion of JAM-A from platelets resulted in increased reactivity and in accelerated progression of atherosclerosis. The aim of this study was to investigate the specific contribution of platelet-derived JAM-A to neointima formation after vascular injury. Mice with or without platelet-specific (tr)JAM-A-deficiency in an apolipoprotein e (apoe-/- ) background underwent wire-induced injury of the common carotid artery. Ex vivo imaging by two-photon microscopy revealed increased platelet coverage at the site of injury in trJAM-A-deficient mice. Cell recruitment assays showed increased adhesion of monocytic cells to activated JAM-A-deficient platelets than to control platelets. Inhibition of αM ß2 or GPIbα, but not of CD62P, suppressed those differences. Up to 4 weeks after wire injury, intimal neoplasia and neointimal cellular content were analysed. Neointimal lesion area was increased in trJAM-A-/- apoe-/- mice and the lesions showed an increased macrophage accumulation and proliferating smooth muscle cells compared with trJAM-A+/+ apoe-/- littermates 2 weeks, but not 4 weeks after injury. Re-endothelialization was decreased in trJAM-A-/- apoe-/- mice compared with controls 2 weeks after injury, yet it was complete in both groups after 4 weeks. A platelet gain of function by deletion of JAM-A accelerates neointima formation only during earlier phases after vascular injury, through an increased recruitment of mononuclear cells. Thus, the contribution of platelets might become less important when neointima formation progresses to later stages.


Subject(s)
Apolipoproteins E/genetics , Atherosclerosis/genetics , Carotid Artery Injuries/genetics , Cell Adhesion Molecules/genetics , Hyperlipidemias/genetics , Neointima/genetics , Receptors, Cell Surface/genetics , Animals , Apolipoproteins E/deficiency , Atherosclerosis/complications , Atherosclerosis/metabolism , Atherosclerosis/pathology , Blood Platelets/metabolism , Blood Platelets/pathology , Carotid Arteries/metabolism , Carotid Arteries/pathology , Carotid Artery Injuries/complications , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Cell Adhesion , Cell Adhesion Molecules/deficiency , Female , Gene Expression Regulation , Hyperlipidemias/complications , Hyperlipidemias/metabolism , Hyperlipidemias/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Monocytes/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Neointima/complications , Neointima/metabolism , Neointima/pathology , Receptors, Cell Surface/deficiency , Signal Transduction , Vascular Remodeling/genetics
15.
Circ Res ; 116(4): 587-99, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25472975

ABSTRACT

RATIONALE: Besides their essential role in hemostasis, platelets also have functions in inflammation. In platelets, junctional adhesion molecule (JAM)-A was previously identified as an inhibitor of integrin αIIbß3-mediated outside-in signaling and its genetic knockdown resulted in hyperreactivity. OBJECTIVE: This gain-of-function was specifically exploited to investigate the role of platelet hyperreactivity in plaque development. METHODS AND RESULTS: JAM-A-deficient platelets showed increased aggregation and cellular and sarcoma tyrosine-protein kinase activation. On αIIbß3 ligation, JAM-A was shown to be dephosphorylated, which could be prevented by protein tyrosine phosphatase nonreceptor type 1 inhibition. Mice with or without platelet-specific (tr)JAM-A-deficiency in an apolipoprotein e (apoe(-/-)) background were fed a high-fat diet. After ≤12 weeks of diet, trJAM-A(-/-)apoe-/- mice showed increased aortic plaque formation when compared with trJAM-A(+/+) apoe(-/-) controls, and these differences were most evident at early time points. At 2 weeks, the plaques of the trJAM-A(-/-) apoe(-/-) animals revealed increased macrophage, T cell, and smooth muscle cell content. Interestingly, plasma levels of chemokines CC chemokine ligand 5 and CXC-chemokine ligand 4 were increased in the trJAM-A(-/-) apoe(-/-)mice, and JAM-A-deficient platelets showed increased binding to monocytes and neutrophils. Whole-blood perfusion experiments and intravital microscopy revealed increased recruitment of platelets and monocytes to the inflamed endothelium in blood of trJAM-A(-/-) apoe(-/-)mice. Notably, these proinflammatory effects of JAM-A-deficient platelets could be abolished by the inhibition of αIIbß3 signaling in vitro. CONCLUSIONS: Deletion of JAM-A causes a gain-of-function in platelets, with lower activation thresholds and increased inflammatory activities. This leads to an increase of plaque formation, particularly in early stages of the disease.


Subject(s)
Aorta/metabolism , Aortic Diseases/etiology , Atherosclerosis/etiology , Blood Platelets/metabolism , Carotid Artery Diseases/etiology , Cell Adhesion Molecules/deficiency , Hyperlipidemias/complications , Platelet Aggregation , Receptors, Cell Surface/deficiency , Animals , Aorta/pathology , Aortic Diseases/blood , Aortic Diseases/genetics , Aortic Diseases/pathology , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Atherosclerosis/blood , Atherosclerosis/genetics , Atherosclerosis/pathology , Carotid Artery Diseases/blood , Carotid Artery Diseases/genetics , Carotid Artery Diseases/pathology , Cell Adhesion , Cell Adhesion Molecules/blood , Cell Adhesion Molecules/genetics , Cells, Cultured , Chemotaxis, Leukocyte , Diet, High-Fat , Disease Models, Animal , Disease Progression , Female , Genotype , Humans , Hyperlipidemias/blood , Hyperlipidemias/genetics , Inflammation Mediators/metabolism , Leukocytes/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Plaque, Atherosclerotic , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Receptors, Cell Surface/blood , Receptors, Cell Surface/genetics , Thrombosis/blood , Thrombosis/etiology , Time Factors , src-Family Kinases/metabolism
16.
J Mol Cell Cardiol ; 99: 57-64, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27539859

ABSTRACT

A key response of the myocardium to stress is the secretion of factors with paracrine or endocrine function. Intriguing in this respect is peptidase inhibitor 16 (PI16), a member of the CAP family of proteins which we found to be highly upregulated in cardiac disease. Up to this point, the mechanism of action and physiological function of PI16 remained elusive. Here, we show that PI16 is predominantly expressed by cardiac fibroblasts, which expose PI16 to the interstitium via a glycophosphatidylinositol (-GPI) membrane anchor. Based on a reported genetic association of PI16 and plasma levels of the chemokine chemerin, we investigated whether PI16 regulates post-translational processing of its precursor pro-chemerin. PI16-deficient mice were engineered and found to generate higher levels of processed chemerin than wildtype mice. Purified recombinant PI16 efficiently inhibited cathepsin K, a chemerin-activating protease, in vitro. Moreover, we show that conditioned medium from PI16-overexpressing cells impaired the activation of pro-chemerin. Together, our data indicate that PI16 suppresses chemerin activation in the myocardium and suggest that this circuit may be part of the cardiac stress response.


Subject(s)
Chemokines/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Myocardium/metabolism , Proteinase Inhibitory Proteins, Secretory/metabolism , Animals , Cathepsin K/metabolism , Cell Communication , Cell Membrane/metabolism , Chemokines/genetics , Fibroblasts/metabolism , Gene Knockout Techniques , Intercellular Signaling Peptides and Proteins/genetics , Mice , Mice, Knockout , Models, Biological , Receptors, Chemokine , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
17.
Circulation ; 132(6): 490-501, 2015 Aug 11.
Article in English | MEDLINE | ID: mdl-26068045

ABSTRACT

BACKGROUND: Leukocyte migration is critical for the infiltration of monocytes and accumulation of monocyte-derived macrophages in inflammation. Considering that Hck and Fgr are instrumental in this process, their impact on atherosclerosis and on lesion inflammation and stability was evaluated. METHODS AND RESULTS: Hematopoietic Hck/Fgr-deficient, LDLr(-/-) chimeras, obtained by bone marrow transplantation, had smaller but, paradoxically, less stable lesions with reduced macrophage content, overt cap thinning, and necrotic core expansion as the most prominent features. Despite a Ly6C(high)-skewed proinflammatory monocyte phenotype, Hck/Fgr deficiency led to disrupted adhesion of myeloid cells to and transmigration across endothelial monolayers in vitro and atherosclerotic plaques in vivo, as assessed by intravital microscopy, flow cytometry, and histological examination of atherosclerotic arteries. Moreover, Hck/Fgr-deficient macrophages showed blunted podosome formation and mesenchymal migration capacity. In consequence, transmigrated double-knockout macrophages were seen to accumulate in the fibrous cap, potentially promoting its focal erosion, as observed for double-knockout chimeras. CONCLUSIONS: The hematopoietic deficiency of Hck and Fgr led to attenuated atherosclerotic plaque formation by abrogating endothelial adhesion and transmigration; paradoxically, it also promoted plaque instability by causing monocyte subset imbalance and subendothelial accumulation, raising a note of caution regarding src kinase-targeted intervention in plaque inflammation.


Subject(s)
Chemotaxis, Leukocyte/physiology , Macrophages, Peritoneal/pathology , Monocytes/pathology , Plaque, Atherosclerotic/pathology , Proto-Oncogene Proteins c-hck/deficiency , Proto-Oncogene Proteins/deficiency , src-Family Kinases/deficiency , Animals , Apoptosis , Cell Adhesion , Cell Surface Extensions/ultrastructure , Cells, Cultured , Endothelial Cells , Extracellular Matrix Proteins/metabolism , Female , Gene Expression Profiling , Humans , Leukocyte Rolling , Mice , Mice, Inbred C57BL , Mice, Knockout , Phagocytosis , Plaque, Atherosclerotic/enzymology , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/physiology , Proto-Oncogene Proteins c-hck/genetics , Proto-Oncogene Proteins c-hck/physiology , Radiation Chimera , Receptors, LDL/deficiency , Receptors, LDL/genetics , Receptors, LDL/physiology , Transendothelial and Transepithelial Migration , src-Family Kinases/genetics , src-Family Kinases/physiology
18.
Angew Chem Int Ed Engl ; 55(48): 14963-14966, 2016 11 21.
Article in English | MEDLINE | ID: mdl-27785869

ABSTRACT

Protein-protein interactions (PPIs) govern most processes in living cells. Current drug development strategies are aimed at disrupting or stabilizing PPIs, which require a thorough understanding of PPI mechanisms. Examples of such PPIs are heteromeric chemokine interactions that are potentially involved in pathological disorders such as cancer, atherosclerosis, and HIV. It remains unclear whether this functional modulation is mediated by heterodimer formation or by the additive effects of mixed chemokines on their respective receptors. To address this issue, we report the synthesis of a covalent RANTES-PF4 heterodimer (termed OPRAH) by total chemical synthesis and oxime ligation, with an acceleration of the final ligation step driven by PPIs between RANTES and PF4. Compared to mixed separate chemokines, OPRAH exhibited increased biological activity, thus providing evidence that physical formation of the heterodimer indeed mediates enhanced function.


Subject(s)
Chemokines/chemistry , Oximes/chemistry , Endothelial Cells/chemistry , Humans , Models, Molecular , Molecular Conformation , Protein Binding
19.
Circulation ; 129(1): 66-76, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24065611

ABSTRACT

BACKGROUND: Junctional adhesion molecule (JAM)-A expressed in endothelial, epithelial, and blood cells can regulate permeability and leukocyte extravasation. Atherosclerosis develops at sites of disturbed flow in large arteries, but the mechanisms guiding inflammatory cells into these predilection sites remain unknown. METHODS AND RESULTS: To characterize cell-specific functions of JAM-A in atherosclerosis, we used apolipoprotein E-deficient mice with a somatic or endothelium-specific deficiency in JAM-A and bone marrow chimeras with JAM-A-deficient leukocytes. We show that impaired JAM-A expression in endothelial cells reduced mononuclear cell recruitment into the arterial wall and limited atherosclerotic lesion formation in hyperlipidemic mice. In contrast, JAM-A deficiency in bone marrow cells impeded monocyte de-adhesion, thereby increasing vascular permeability and lesion formation, whereas somatic JAM-A deletion revealed no significant effects. Regions with disturbed flow displayed a focal enrichment and luminal redistribution of endothelial JAM-A and were preferentially protected by its deficiency. The functional expression and redistribution of endothelial JAM-A was increased by oxidized low-density lipoprotein, but confined by atheroprotective laminar flow through an upregulation of microRNA (miR)-145, which repressed JAM-A. CONCLUSIONS: Our data identify endothelial JAM-A as an important effector molecule integrating atherogenic conditions to direct inflammatory cell entry at predilection sites of atherosclerosis.


Subject(s)
Atherosclerosis/physiopathology , Cell Adhesion Molecules/genetics , Endothelial Cells/physiology , Monocytes/physiology , Receptors, Cell Surface/genetics , Animals , Aorta/cytology , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/pathology , Cell Line, Transformed , Cell Movement/physiology , Cells, Cultured , Disease Models, Animal , Endothelial Cells/cytology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/cytology , Regional Blood Flow/physiology , Vasculitis/genetics , Vasculitis/pathology , Vasculitis/physiopathology
20.
Circulation ; 129(11): 1244-53, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24374972

ABSTRACT

BACKGROUND: The aim of this study was to determine the role of the chemokine receptor CXCR7 in atherosclerosis and vascular remodeling. CXCR7 is the alternative receptor of CXCL12, which regulates stem cell-mediated vascular repair and limits atherosclerosis via its receptor, CXCR4. METHODS AND RESULTS: Wire-induced injury of the carotid artery was performed in mice with a ubiquitous, conditional deletion of CXCR7 and in mice treated with the synthetic CXCR7 ligand CCX771. The effect of CCX771 treatment on atherosclerosis was studied in apolipoprotein E-deficient (Apoe(-/-)) mice fed a high-fat diet for 12 weeks. Lipoprotein fractions were quantified in the plasma of Apoe(-/-) mice by fast protein liquid chromatography. Uptake of DiI-labeled very low-density lipoprotein to adipose tissue was determined by 2-photon microscopy. We show that genetic deficiency of Cxcr7 increased neointima formation and lesional macrophage accumulation in hyperlipidemic mice after vascular injury. This was related to increased serum cholesterol levels and subsequent hyperlipidemia-induced monocytosis. Conversely, administration of the CXCR7 ligand CCX771 to Apoe(-/-) mice inhibited lesion formation and ameliorated hyperlipidemia after vascular injury and during atherosclerosis. Treatment with CCX771 reduced circulating very low-density lipoprotein levels but not low-density lipoprotein or high-density lipoprotein levels and increased uptake of very low-density lipoprotein into Cxcr7-expressing white adipose tissue. This effect of CCX771 was associated with an enhanced lipase activity and reduced expression of Angptl4 in adipose tissue. CONCLUSIONS: CXCR7 regulates blood cholesterol by promoting its uptake in adipose tissue. This unexpected cholesterol-lowering effect of CXCR7 is beneficial for atherosclerotic vascular diseases, presumably via amelioration of hyperlipidemia-induced monocytosis, and can be augmented with a synthetic CXCR7 ligand.


Subject(s)
Adipose Tissue/metabolism , Atherosclerosis/metabolism , Cholesterol/metabolism , Hyperlipidemias/metabolism , Receptors, CXCR/biosynthesis , Animals , Atherosclerosis/prevention & control , Hyperlipidemias/prevention & control , Ligands , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, CXCR/agonists
SELECTION OF CITATIONS
SEARCH DETAIL