Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Environ Sci Technol ; 58(15): 6637-6646, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38580315

ABSTRACT

Methanogenesis is a critical process in the carbon cycle that is applied industrially in anaerobic digestion and biogas production. While naturally occurring in diverse environments, methanogenesis requires anaerobic and reduced conditions, although varying degrees of oxygen tolerance have been described. Microaeration is suggested as the next step to increase methane production and improve hydrolysis in digestion processes; therefore, a deeper understanding of the methanogenic response to oxygen stress is needed. To explore the drivers of oxygen tolerance in methanogenesis, two parallel enrichments were performed under the addition of H2/CO2 in an environment without reducing agents and in a redox-buffered environment by adding redox mediator 9,10-anthraquinone-2,7-disulfonate disodium. The cellular response to oxidative conditions is mapped using proteomic analysis. The resulting community showed remarkable tolerance to high-redox environments and was unperturbed in its methane production. Next to the expression of pathways to mitigate reactive oxygen species, the higher redox potential environment showed an increased presence of selenocysteine and selenium-associated pathways. By including sulfur-to-selenium mass shifts in a proteomic database search, we provide the first evidence of the dynamic and large-scale incorporation of selenocysteine as a response to oxidative stress in hydrogenotrophic methanogenesis and the presence of a dynamic selenoproteome.


Subject(s)
Euryarchaeota , Selenium , Methane , Proteomics , Selenocysteine/metabolism , Euryarchaeota/metabolism , Oxidative Stress , Oxygen , Anaerobiosis , Bioreactors
2.
Bioresour Technol ; 399: 130506, 2024 May.
Article in English | MEDLINE | ID: mdl-38423486

ABSTRACT

Biomethanation of carbon dioxide (CO2) from flue gas is a potential enabler of the green transition, particularly when integrated with the power-to-gas chain. However, challenges arise in achieving synthetic natural gas quality when utilizing CO2 from diluted carbon sources, and the high costs of CO2 separation using amine-based solutions make large-scale implementation unfeasible. We propose an innovative continuous biomethanation system that integrates carbon capture and CO2 stripping through microbial utilization, eliminating expenses with the stripper. Stable continuous biomethane production (83-92 % methane purity) was achieved from flue gas-CO2 using a biocompatible aqueous n-methyldiethanolamine (MDEA) solution (50 mmol/L) under mesophilic and hydrogen-limiting conditions. MDEA was found to be recalcitrant to biodegradation and could be reused after regeneration. Demonstrating the microbial ability to simultaneously strip and convert the captured CO2 and regenerate MDEA provides a new pathway for valorization of flue gas CO2.


Subject(s)
3,4-Methylenedioxyamphetamine/analogs & derivatives , Carbon Dioxide , Natural Gas , Carbon Dioxide/metabolism , Ethanolamines
SELECTION OF CITATIONS
SEARCH DETAIL