Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Nat Chem Biol ; 19(2): 187-197, 2023 02.
Article in English | MEDLINE | ID: mdl-36266352

ABSTRACT

Lipids contribute to the structure, development, and function of healthy brains. Dysregulated lipid metabolism is linked to aging and diseased brains. However, our understanding of lipid metabolism in aging brains remains limited. Here we examined the brain lipidome of mice across their lifespan using untargeted lipidomics. Co-expression network analysis highlighted a progressive decrease in 3-sulfogalactosyl diacylglycerols (SGDGs) and SGDG pathway members, including the potential degradation products lyso-SGDGs. SGDGs show an age-related decline specifically in the central nervous system and are associated with myelination. We also found that an SGDG dramatically suppresses LPS-induced gene expression and release of pro-inflammatory cytokines from macrophages and microglia by acting on the NF-κB pathway. The detection of SGDGs in human and macaque brains establishes their evolutionary conservation. This work enhances interest in SGDGs regarding their roles in aging and inflammatory diseases and highlights the complexity of the brain lipidome and potential biological functions in aging.


Subject(s)
Aging , Lipids , Animals , Humans , Mice , Aging/genetics , Anti-Inflammatory Agents , Brain/metabolism , Microglia/metabolism , NF-kappa B/metabolism
2.
Blood ; 140(16): 1774-1789, 2022 10 20.
Article in English | MEDLINE | ID: mdl-35714307

ABSTRACT

Individuals with age-related clonal hematopoiesis (CH) are at greater risk for hematologic malignancies and cardiovascular diseases. However, predictive preclinical animal models to recapitulate the spectrum of human CH are lacking. Through error-corrected sequencing of 56 human CH/myeloid malignancy genes, we identified natural CH driver mutations in aged rhesus macaques matching genes somatically mutated in human CH, with DNMT3A mutations being the most frequent. A CH model in young adult macaques was generated via autologous transplantation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated gene-edited hematopoietic stem and progenitor cells (HSPCs), targeting the top human CH genes with loss-of-function (LOF) mutations. Long-term follow-up revealed reproducible and significant expansion of multiple HSPC clones with heterozygous TET2 LOF mutations, compared with minimal expansion of clones bearing other mutations. Although the blood counts of these CH macaques were normal, their bone marrows were hypercellular and myeloid-predominant. TET2-disrupted myeloid colony-forming units isolated from these animals showed a distinct hyperinflammatory gene expression profile compared with wild type. In addition, mature macrophages purified from the CH macaques showed elevated NLRP3 inflammasome activity and increased interleukin-1ß (IL-1ß) and IL-6 production. The model was used to test the impact of IL-6 blockage by tocilizumab, documenting a slowing of TET2-mutated expansion, suggesting that interruption of the IL-6 axis may remove the selective advantage of mutant HSPCs. These findings provide a model for examining the pathophysiology of CH and give insights into potential therapeutic interventions.


Subject(s)
Clonal Hematopoiesis , Dioxygenases , Humans , Young Adult , Animals , Aged , Clonal Hematopoiesis/genetics , Hematopoiesis/genetics , Interleukin-1beta/genetics , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Macaca mulatta , CRISPR-Associated Protein 9 , Interleukin-6/genetics , Clone Cells , DNA-Binding Proteins/genetics , Dioxygenases/genetics
3.
Biol Reprod ; 103(6): 1209-1216, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32901819

ABSTRACT

Dehydroepiandrosterone (DHEA) hormonal supplementation can improve oocyte quality in women with diminished ovarian function. However, it is unclear whether DHEA supplementation can also enhance ovarian function during the perimenopause (i.e., when the number of follicles in the ovary has undergone a marked reduction). To address this question, we examined the impact of 2.5-months of daily 5-mg oral DHEA supplementation on the number of ovarian follicles and the concentration of anti-Müllerian hormone (AMH) in perimenopausal rhesus macaques. Like women, these long-lived nonhuman primates have ~ 28-day menstrual cycles and eventually undergo menopause. They also show similar age-related neuroendocrine changes, including a marked decrease in circulating concentrations of DHEA and DHEA sulfate (DHEAS). Our experimental design involved the following three groups of animals (N = 6 per group): Young adult (mean age = 11.6 years), Old control (mean age = 23.1 years), and Old DHEA-treated (mean age = 23.5 years). Histological examination of the ovaries revealed a significant age-related decrease in the mean number of primordial follicles despite DHEA supplementation. Moreover, AMH concentrations within the ovaries and circulation, assessed by Western analysis and ELISA, respectively, showed significant age-related decreases that were not attenuated by DHEA supplementation. Taken together, these results fail to show a clear effect of short-term physiological DHEA supplementation on the perimenopausal ovary. However, they do not exclude the possibility that alternative DHEA supplementation paradigms (e.g., involving an earlier start date, longer duration and using pharmacological doses) may extend reproductive potential during aging.


Subject(s)
Aging/physiology , Dehydroepiandrosterone/pharmacology , Macaca mulatta/physiology , Ovary/drug effects , Ovary/physiology , Perimenopause/physiology , Animals , Drug Administration Schedule , Female
4.
Neurobiol Dis ; 119: 65-78, 2018 11.
Article in English | MEDLINE | ID: mdl-30048804

ABSTRACT

We have identified a natural Japanese macaque model of the childhood neurodegenerative disorder neuronal ceroid lipofuscinosis, commonly known as Batten Disease, caused by a homozygous frameshift mutation in the CLN7 gene (CLN7-/-). Affected macaques display progressive neurological deficits including visual impairment, tremor, incoordination, ataxia and impaired balance. Imaging, functional and pathological studies revealed that CLN7-/- macaques have reduced retinal thickness and retinal function early in disease, followed by profound cerebral and cerebellar atrophy that progresses over a five to six-year disease course. Histological analyses showed an accumulation of cerebral, cerebellar and cardiac storage material as well as degeneration of neurons, white matter fragmentation and reactive gliosis throughout the brain of affected animals. This novel CLN7-/- macaque model recapitulates key behavioral and neuropathological features of human Batten Disease and provides novel insights into the pathophysiology linked to CLN7 mutations. These animals will be invaluable for evaluating promising therapeutic strategies for this devastating disease.


Subject(s)
Disease Models, Animal , Membrane Transport Proteins/genetics , Neuronal Ceroid-Lipofuscinoses/diagnostic imaging , Neuronal Ceroid-Lipofuscinoses/genetics , Animals , Female , Gene Knockout Techniques/methods , Locomotion/physiology , Macaca , Male , Mutation, Missense/genetics , Neuronal Ceroid-Lipofuscinoses/physiopathology , Postural Balance/physiology , Primates , Vision Disorders/diagnostic imaging , Vision Disorders/genetics , Vision Disorders/physiopathology
5.
J Neurosci ; 36(40): 10416-10424, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27707975

ABSTRACT

Studies of the effect of hormone therapy on cognitive function in menopausal women have been equivocal, in part due to differences in the type and timing of hormone treatment. Here we cognitively tested aged female rhesus macaques on (1) the delayed response task of spatial working memory, (2) a visuospatial attention task that measured spatially and temporally cued reaction times, and (3) a simple reaction time task as a control for motor speed. After task acquisition, animals were ovariectomized (OVX). Their performance was compared with intact controls for 2 months, at which time no group differences were found. The OVX animals were then assigned to treatment with either a subcutaneous sham implant (OVX), 17-ß estradiol (E) implant (OVX+E) or E implant plus cyclic oral progesterone (OVX+EP). All groups were then tested repeatedly over 12 months. The OVX+E animals performed significantly better on the delayed response task than all of the other groups for much of the 12 month testing period. The OVX+EP animals also showed improved performance in the delayed response task, but only at 30 s delays and with performance levels below that of OVX+E animals. The OVX+E animals also performed significantly better in the visuospatial attention task, particularly in the most challenging invalid cue condition; this difference also was maintained across the 12 month testing period. Simple reaction time was not affected by hormonal manipulation. These data demonstrate that chronic, continuous administration of E can exert multiple beneficial cognitive effects in aged, OVX rhesus macaque females. SIGNIFICANCE STATEMENT: Hormone therapy after menopause is controversial. We tested the effects of hormone replacement in aged rhesus macaques, soon after surgically-induced menopause [ovariectomy (OVX)], on tests of memory and attention. Untreated ovarian-intact and OVX animals were compared with OVX animals receiving estradiol (E) alone or E with progesterone (P). E was administered in a continuous fashion via subcutaneous implant, whereas P was administered orally in a cyclic fashion. On both tests, E-treated animals performed better than the other 3 experimental groups across 1 year of treatment. Thus, in this monkey model, chronic E administered soon after the loss of ovarian hormones had long-term benefits for cognitive function.


Subject(s)
Aging/psychology , Cognition/drug effects , Estrogen Replacement Therapy/psychology , Animals , Attention/drug effects , Cues , Estradiol/blood , Estradiol/pharmacology , Female , Macaca mulatta , Memory, Short-Term/drug effects , Ovariectomy , Progesterone/blood , Progesterone/pharmacology , Psychomotor Performance/drug effects , Reaction Time/drug effects , Spatial Memory/drug effects
6.
Neuroimage ; 111: 192-203, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25665963

ABSTRACT

Diffusion magnetic resonance imaging (d-MRI) is a powerful non-invasive and non-destructive technique for characterizing brain tissue on the microscopic scale. However, the lack of validation of d-MRI by independent experimental means poses an obstacle to accurate interpretation of data acquired using this method. Recently, structure tensor analysis has been applied to light microscopy images, and this technique holds promise to be a powerful validation strategy for d-MRI. Advantages of this approach include its similarity to d-MRI in terms of averaging the effects of a large number of cellular structures, and its simplicity, which enables it to be implemented in a high-throughput manner. However, a drawback of previous implementations of this technique arises from it being restricted to 2D. As a result, structure tensor analyses have been limited to tissue sectioned in a direction orthogonal to the direction of interest. Here we describe the analytical framework for extending structure tensor analysis to 3D, and utilize the results to analyze serial image "stacks" acquired with confocal microscopy of rhesus macaque hippocampal tissue. Implementation of 3D structure tensor procedures requires removal of sources of anisotropy introduced in tissue preparation and confocal imaging. This is accomplished with image processing steps to mitigate the effects of anisotropic tissue shrinkage, and the effects of anisotropy in the point spread function (PSF). In order to address the latter confound, we describe procedures for measuring the dependence of PSF anisotropy on distance from the microscope objective within tissue. Prior to microscopy, ex vivo d-MRI measurements performed on the hippocampal tissue revealed three regions of tissue with mutually orthogonal directions of least restricted diffusion that correspond to CA1, alveus and inferior longitudinal fasciculus. We demonstrate the ability of 3D structure tensor analysis to identify structure tensor orientations that are parallel to d-MRI derived diffusion tensors in each of these three regions. It is concluded that the 3D generalization of structure tensor analysis will further improve the utility of this method for validation of d-MRI by making it a more flexible experimental technique that closer resembles the inherently 3D nature of d-MRI measurements.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Hippocampus/anatomy & histology , Image Processing, Computer-Assisted/methods , Animals , Female , Macaca mulatta , Microscopy, Confocal
7.
Front Aging Neurosci ; 16: 1328543, 2024.
Article in English | MEDLINE | ID: mdl-38560025

ABSTRACT

Introduction: The hippocampus is especially susceptible to age-associated neuronal pathologies, and there is concern that the age-associated rise in cortisol secretion from the adrenal gland may contribute to their etiology. Furthermore, because 11ß-hydroxysteroid dehydrogenase type 1 (HSD11B1) catalyzes the reduction of cortisone to the active hormone cortisol, it is plausible that an increase in the expression of this enzyme enhances the deleterious impact of cortisol in the hippocampus and contributes to the neuronal pathologies that underlie cognitive decline in the elderly. Methods: Rhesus macaques were used as a translational animal model of human aging, to examine age-related changes in gene and protein expressions of (HSD11B1/HSD11B1) in the hippocampus, a region of the brain that plays a crucial role in learning and memory. Results: Older animals showed significantly (p < 0.01) higher base-line cortisol levels in the circulation. In addition, they showed significantly (p < 0.05) higher hippocampal expression of HSD11B1 but not NR3C1 and NR3C2 (i.e., two receptor-encoding genes through which cortisol exerts its physiological actions). A similar age-related significant (p < 0.05) increase in the expression of the HSD11B1 was revealed at the protein level by western blot analysis. Discussion: The data suggest that an age-related increase in the expression of hippocampal HSD11B1 is likely to raise cortisol concentrations in this cognitive brain area, and thereby contribute to the etiology of neuropathologies that ultimately lead to neuronal loss and dementia. Targeting this enzyme pharmacologically may help to reduce the negative impact of elevated cortisol concentrations within glucocorticoid-sensitive brain areas and thereby afford neuronal protection.

8.
J Alzheimers Dis Rep ; 8(1): 25-32, 2024.
Article in English | MEDLINE | ID: mdl-38229831

ABSTRACT

Rhesus macaques develop amyloid-ß (Aß) plaques during old age, but it is unclear how extensively they express other pathological hallmarks of dementia. Here we used immunohistochemistry to examine expression of phosphorylated tau (pTau) protein and cytoplasmic inclusions of TAR DNA binding protein 43 kDa (TDP-43) within the amygdala of young and old males, and also in old surgically-menopausal females that were maintained on regular or obesogenic diets. Only one animal, a 23-year-old female, showed pTau expression and none showed TDP-43 inclusions. What genetic and/or environmental factors protect macaques from expressing more severe human neuro-pathologies remains an interesting unresolved question.

9.
Geroscience ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509416

ABSTRACT

The postmenopausal decrease in circulating estradiol (E2) levels has been shown to contribute to several adverse physiological and psychiatric effects. To elucidate the molecular effects of E2 on the brain, we examined differential gene expression and DNA methylation (DNAm) patterns in the nonhuman primate brain following ovariectomy (Ov) and subsequent subcutaneous bioidentical E2 chronic treatment. We identified several dysregulated molecular networks, including MAPK signaling and dopaminergic synapse response, that are associated with ovariectomy and shared across two different brain areas, the occipital cortex (OC) and prefrontal cortex (PFC). The finding that hypomethylation (p = 1.6 × 10-51) and upregulation (p = 3.8 × 10-3) of UBE2M across both brain regions provide strong evidence for molecular differences in the brain induced by E2 depletion. Additionally, differential expression (p = 1.9 × 10-4; interaction p = 3.5 × 10-2) of LTBR in the PFC provides further support for the role E2 plays in the brain, by demonstrating that the regulation of some genes that are altered by ovariectomy may also be modulated by Ov followed by hormone replacement therapy (HRT). These results present real opportunities to understand the specific biological mechanisms that are altered with depleted E2. Given E2's potential role in cognitive decline and neuroinflammation, our findings could lead to the discovery of novel therapeutics to slow cognitive decline. Together, this work represents a major step toward understanding molecular changes in the brain that are caused by ovariectomy and how E2 treatment may revert or protect against the negative neuro-related consequences caused by a depletion in estrogen as women approach menopause.

10.
mBio ; 15(6): e0082924, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38771046

ABSTRACT

Nontuberculous mycobacteria (NTM) are environmentally ubiquitous organisms that predominately cause NTM pulmonary disease (NTMPD) in individuals over the age of 65. The incidence of NTMPD has increased in the U.S., exceeding that of Mycobacterium tuberculosis. However, the mechanisms leading to higher susceptibility and severity of NTMPD with aging are poorly defined in part due to the lack of animal models that accurately recapitulate human disease. Here, we compared bacterial load, microbial communities, and host responses longitudinally between three young (two female and one male) and two aged (two female) rhesus macaques inoculated with Mycobacterium avium subsp. hominissuis (MAH) in the right caudal lobe. Unilateral infection resulted in a low bacterial load in both young and aged animals confined to the infected side. Although a robust inflammatory response was only observed in the inoculated lung, immune cell infiltration and antigen-specific T cells were detected in both lungs. Computed tomography, gross pathology, and histopathology revealed increased disease severity and persistence of bacterial DNA in aged animals. Additional analyses showed the translocation of gut and oral-pharyngeal bacterial DNA into the lower respiratory microbiome. Finally, single-cell RNA sequencing revealed a heightened inflammatory response to MAH infection by alveolar macrophages in aged animals. These data are consistent with the model that increased disease severity in the aged is mediated by a dysregulated macrophage response that may be sustained through persistent antigen presence. IMPORTANCE: Nontuberculous mycobacteria (NTM) are emerging as pathogens of high consequence, as cases of NTM pulmonary disease (NTMPD) have exceeded those of Mycobacterium tuberculosis. NTMPD can be debilitating, particularly in patients over 65 years of age, as it causes chronic cough and fatigue requiring prolonged treatments with antibiotics. The underlying mechanisms of this increased disease severity with age are poorly understood, hampering the development of therapeutics and vaccines. Here, we use a rhesus macaque model to investigate the impact of age on host-NTM interactions. This work shows that aging is associated with increased disease severity and bacterial persistence in aged rhesus macaques, thus providing a preclinical model to develop and test novel therapeutics and interventions.


Subject(s)
Lung , Macaca mulatta , Mycobacterium Infections, Nontuberculous , Mycobacterium Infections, Nontuberculous/diagnostic imaging , Mycobacterium Infections, Nontuberculous/immunology , Mycobacterium Infections, Nontuberculous/microbiology , Lung/diagnostic imaging , Lung/immunology , Lung/microbiology , Animals , Male , Female , Age Factors , Tomography, X-Ray Computed , Transcriptome , Microbiota/physiology
11.
Biochim Biophys Acta ; 1822(2): 111-9, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22056405

ABSTRACT

The purpose of this study was to determine the relationship between mitochondrial DNA (mtDNA) deletions, mtDNA content and aging in rhesus monkeys. Using 2 sets of specific primers, we amplified an 8 kb mtDNA fragment covering a common 5.7 kb deletion and the entire 16.5 kb mitochondrial genome in the brain and buffy-coats of young and aged monkeys. We studied a total of 66 DNA samples: 39 were prepared from a buffy-coat and 27 were prepared from occipital cortex tissues. The mtDNA data were assessed using a permutation test to identify differences in mtDNA, in the different monkey groups. Using real-time RT-PCR strategy, we also assessed both mtDNA and nuclear DNA levels for young, aged and male and female monkeys. We found a 5.7 kb mtDNA deletion in 81.8% (54 of 66) of the total tested samples. In the young group of buffy-coat DNA, we found 5.7 kb deletions in 7 of 17 (41%), and in the aged group, we found 5.7 kb deletions in 12 of 22 (54%), suggesting that the prevalence of mtDNA deletions is related to age. We found decreased mRNA levels of mtDNA in aged monkeys relative to young monkeys. The increases in mtDNA deletions and mtDNA levels in aged rhesus monkeys suggest that damaged DNA accumulates as rhesus monkeys age and these altered mtDNA changes may have physiological relevance to compensate decreased mitochondrial function.


Subject(s)
Aging/genetics , DNA Damage/genetics , DNA, Mitochondrial/genetics , Genome, Mitochondrial , Macaca mulatta/genetics , Mitochondria/genetics , Animals , Blood Buffy Coat/metabolism , Brain/metabolism , Female , Gene Deletion , Macaca mulatta/blood , Male
12.
Neurobiol Aging ; 126: 34-43, 2023 06.
Article in English | MEDLINE | ID: mdl-36917864

ABSTRACT

The rhesus macaque is a long-lived nonhuman primate (NHP) with a brain structure similar to humans, which may represent a valuable translational animal model in which to study human brain aging. Previous magnetic resonance imaging (MRI) studies of age in rhesus macaque brains have been prone to low statistical power, unbalanced sex ratio and lack of a complete age range. To overcome these problems, the current study surveyed structural T1-weighted magnetic resonance imaging scans of 66 animals, 34 females (aged 6-31 years) and 32 males (aged 5-27 years). Differences observed in older animals, included enlargement of the lateral ventricles and a smaller volume in the frontal cortex, caudate, putamen, hypothalamus, and thalamus. Unexpected, greater volume, were measured in older animals in the hippocampus, amygdala, and globus pallidus. There were also numerous differences between males and females with respect to age in both white and gray matter regions. As an apparent model of normative human aging, the macaque is ideal for studying induction and mitigation of neurodegenerative disease.


Subject(s)
Longevity , Neurodegenerative Diseases , Male , Animals , Female , Humans , Aged , Macaca mulatta , Neurodegenerative Diseases/pathology , Brain/diagnostic imaging , Brain/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Magnetic Resonance Imaging/methods
13.
Front Aging Neurosci ; 15: 1326747, 2023.
Article in English | MEDLINE | ID: mdl-38274989

ABSTRACT

Background: Amyloid beta (Aß) plaque density was examined in the amygdala of rhesus macaques, to elucidate the influence of age, diet and hormonal environment. Methods: Luminex technology was used to measure cerebrospinal fluid (CSF) concentrations of Aß40 and Aß42 across three decades, while immunohistochemistry was used to examine Aß plaque density in the amygdala. Results: Aß40 was found to be the predominant isoform of Aß in the CSF, but neither Aß40 or Aß42 concentrations showed an age-related change, and the ratio of Aß42 to Aß40 showed only a marginal increase. Significantly fewer Aß plaques were detected in the amygdala of old ovariectomized animals if they received estradiol HRT (p < 0.001); similar results were obtained regardless of whether they had been maintained on a regular monkey chow for ∼48 months or on a high-fat, high-sugar, Western-style diet for ∼30 months. Conclusion: The results demonstrate that HRT involving estrogen can reduce Aß plaque load in a cognitive brain region of aged non-human primates. The results from this translational animal model may therefore have clinical relevance to the treatment of AD in post-menopausal women, whether used alone, or as a supplement to current pharmacological and monoclonal antibody-based interventions.

14.
bioRxiv ; 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38187564

ABSTRACT

The postmenopausal decrease in circulating estradiol (E2) levels has been shown to contribute to several adverse physiological and psychiatric effects. To elucidate the molecular effects of E2 on the brain, we examined differential gene expression and DNA methylation (DNAm) patterns in the nonhuman primate brain following ovariectomy (Ov) and subsequent E2 treatment. We identified several dysregulated molecular networks, including MAPK signaling and dopaminergic synapse response, that are associated with ovariectomy and shared across two different brain areas, the occipital cortex (OC) and prefrontal cortex (PFC). The finding that hypomethylation (p=1.6×10-51) and upregulation (p=3.8×10-3) of UBE2M across both brain regions, provide strong evidence for molecular differences in the brain induced by E2 depletion. Additionally, differential expression (p=1.9×10-4; interaction p=3.5×10-2) of LTBR in the PFC, provides further support for the role E2 plays in the brain, by demonstrating that the regulation of some genes that are altered by ovariectomy may also be modulated by Ov followed by hormone replacement therapy (HRT). These results present real opportunities to understand the specific biological mechanisms that are altered with depleted E2. Given E2's potential role in cognitive decline and neuroinflammation, our findings could lead to the discovery of novel therapeutics to slow cognitive decline. Together, this work represents a major step towards understanding molecular changes in the brain that are caused by ovariectomy and how E2 treatment may revert or protect against the negative neuro-related consequences caused by a depletion in estrogen as women approach menopause.

15.
Ann Neurol ; 70(3): 362-73, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21674589

ABSTRACT

OBJECTIVE: To describe Japanese macaque encephalomyelitis (JME), a spontaneous inflammatory demyelinating disease occurring in the Oregon National Primate Research Center's (ONPRC) colony of Japanese macaques (JMs, Macaca fuscata). METHODS: JMs with neurologic impairment were removed from the colony, evaluated, and treated with supportive care. Animals were humanely euthanized and their central nervous systems (CNSs) were examined. RESULTS: ONPRC's JM colony was established in 1965 and no cases of JME occurred until 1986. Since 1986, 57 JMs spontaneously developed a disease characterized clinically by paresis of 1 or more limbs, ataxia, or ocular motor paresis. Most animals were humanely euthanized during their initial episode. Three recovered, later relapsed, and were then euthanized. There was no gender predilection and the median age for disease was 4 years. Magnetic resonance imaging of 8 cases of JME revealed multiple gadolinium-enhancing T(1) -weighted hyperintensities in the white matter of the cerebral hemispheres, brainstem, cerebellum, and cervical spinal cord. The CNS of monkeys with JME contained multifocal plaque-like demyelinated lesions of varying ages, including acute and chronic, active demyelinating lesions with macrophages and lymphocytic periventricular infiltrates, and chronic, inactive demyelinated lesions. A previously undescribed gamma-herpesvirus was cultured from acute JME white matter lesions. Cases of JME continue to affect 1% to 3% of the ONPRC colony per year. INTERPRETATION: JME is a unique spontaneous disease in a nonhuman primate that has similarities with multiple sclerosis (MS) and is associated with a novel simian herpesvirus. Elucidating the pathogenesis of JME may shed new light on MS and other human demyelinating diseases.


Subject(s)
Encephalomyelitis/pathology , Encephalomyelitis/veterinary , Monkey Diseases/pathology , Multiple Sclerosis/pathology , Age of Onset , Animals , Ataxia/etiology , Brain/pathology , Cerebrospinal Fluid Proteins/metabolism , Demyelinating Diseases/pathology , Demyelinating Diseases/veterinary , Encephalomyelitis/cerebrospinal fluid , Female , Herpesviridae/genetics , Herpesviridae/isolation & purification , Herpesviridae Infections/veterinary , Humans , Immunohistochemistry , Macaca , Magnetic Resonance Imaging , Male , Monkey Diseases/cerebrospinal fluid , Paralysis/etiology
16.
Geroscience ; 44(1): 229-252, 2022 02.
Article in English | MEDLINE | ID: mdl-34642852

ABSTRACT

Obesity, the cessation of ovarian steroids with menopause, and age are risk factors for mood disorders, dementia, and Alzheimer's disease (AD). However, immediate hormone therapy (HT) after menopause may have beneficial effects in different brain regions involved in memory and cognition. To more closely replicate the age, endocrine, and metabolic environment of obese postmenopausal women, either on or off HT, middle-aged female rhesus macaques were ovariectomized/hysterectomized (OvH) and maintained on a high-fat, high-sugar, obesogenic Western-style diet (WSD) for 30 months; half of the animals received HT immediately after OvH and half served as placebo controls. RNAseq of the occipital (OC) and prefrontal cortex (PFC), hippocampus (HIP), and amygdala (AMG) identified 293, 379, 505, and 4993 differentially expressed genes (DEGs), respectively. Pathway enrichment analysis identified an activation of neuroinflammation in OC and HIP, but an inhibition in the AMG with HT. Synaptogenesis, circadian rhythm, mitochondrial dysfunction, mTOR, glutamate, serotonin, GABA, dopamine, epinephrine/norepinephrine, glucocorticoid receptor signaling, neuronal NOS, and amyloid processing were exclusively enriched in AMG. As compared to the placebo control group, most of these signaling pathways are downregulated after HT, suggesting a protective effect of HT in OvH females under a WSD. Overall, our results suggest that a chronic obesogenic diet may induce a wide range of alterations in multiple signaling pathways that are linked to age-associated brain pathology and dementia. In these individuals, HT seems to have a protective effect against neuroinflammation, amyloid beta depositions, and tau tangle formation.


Subject(s)
Diet, Western , Estradiol , Amyloid beta-Peptides , Animals , Brain , Diet, Western/adverse effects , Dietary Supplements , Estradiol/pharmacology , Female , Macaca mulatta , Transcriptome
17.
Cell Rep ; 39(3): 110725, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35443183

ABSTRACT

Older individuals are at increased risk of developing severe respiratory infections. However, our understanding of the impact of aging on the respiratory tract remains limited as samples from healthy humans are challenging to obtain and results can be confounded by variables such as smoking and diet. Here, we carry out a comprehensive cross-sectional study (n = 34 adult, n = 49 aged) to define the consequences of aging on the lung using the rhesus macaque model. Pulmonary function testing establishes similar age and sex differences as humans. Additionally, we report increased abundance of alveolar and infiltrating macrophages and a concomitant decrease in T cells were in aged animals. scRNAseq reveals shifts from GRZMB to IFN expressing CD8+ T cells in the lungs. These data provide insight into age-related changes in the lungs' functional, microbial, and immunological landscape that explain increased prevalence and severity of respiratory diseases in the elderly.


Subject(s)
CD8-Positive T-Lymphocytes , Lung , Aging , Animals , Cross-Sectional Studies , Female , Macaca mulatta , Male
18.
J Neuroimaging ; 31(3): 480-492, 2021 05.
Article in English | MEDLINE | ID: mdl-33930224

ABSTRACT

BACKGROUND AND PURPOSE: To describe MRI findings in Japanese macaque encephalomyelitis (JME) with emphasis on lesion characteristics, lesion evolution, normal-appearing brain tissue, and similarities to human demyelinating disease. METHODS: MRI data were obtained from 114 Japanese macaques, 30 presenting neurological signs of JME. All animals were screened for presence of T2 -weighted white matter signal hyperintensities; animals with behavioral signs of JME were additionally screened for contrast-enhancing lesions. Whole-brain quantitative T1 maps were collected, and histogram analysis was performed with regression across age to evaluate microstructural changes in normal appearing brain tissue in JME and neurologically normal animals. Quantitative estimates of blood-brain-barrier (BBB) permeability to gadolinium-based-contrast agent (GBCA) were obtained in acute, GBCA-enhancing lesions. Longitudinal imaging data were acquired for 15 JME animals. RESULTS: One hundred and seventy-three focal GBCA-enhancing lesions were identified in 30 animals demonstrating behavioral signs of neurological dysfunction. JME GBCA-enhancing lesions were typically focal and ovoid, demonstrating highest BBB GBCA permeability in the lesion core, similar to acute, focal multiple sclerosis lesions. New GBCA-enhancing lesions arose rapidly from normal-appearing tissue, and BBB permeability remained elevated for weeks. T1 values in normal-appearing tissue were significantly associated with age, but not with sex or disease. CONCLUSIONS: Intense, focal neuroinflammation is a key MRI finding in JME. Several features of JME compare directly to human inflammatory demyelinating diseases. Investigation of JME combined with the development and validation of noninvasive imaging biomarkers offers substantial potential to improve diagnostic specificity and contribute to the understanding of human demyelinating diseases.


Subject(s)
Blood-Brain Barrier/physiology , Brain/diagnostic imaging , Encephalomyelitis/pathology , Encephalomyelitis/veterinary , Hereditary Central Nervous System Demyelinating Diseases/pathology , Adolescent , Adult , Animals , Brain/pathology , Child , Child, Preschool , Contrast Media , Encephalomyelitis/diagnostic imaging , Female , Hereditary Central Nervous System Demyelinating Diseases/diagnostic imaging , Humans , Infant , Inflammation/pathology , Macaca fuscata , Magnetic Resonance Imaging/methods , Male
19.
Ann Clin Transl Neurol ; 8(2): 456-470, 2021 02.
Article in English | MEDLINE | ID: mdl-33440071

ABSTRACT

OBJECTIVE: To determine whether animals with Japanese macaque encephalomyelitis (JME), a spontaneous demyelinating disease similar to multiple sclerosis (MS), harbor myelin-specific T cells in their central nervous system (CNS) and periphery. METHODS: Mononuclear cells (MNCs) from CNS lesions, cervical lymph nodes (LNs) and peripheral blood of Japanese macaques (JMs) with JME, and cervical LN and blood MNCs from healthy controls or animals with non-JME conditions were analyzed for the presence of myelin-specific T cells and changes in interleukin 17 (IL-17) and interferon gamma (IFNγ) expression. RESULTS: Demyelinating JME lesions contained CD4+ T cells and CD8+ T cells specific to myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP), and/or proteolipid protein (PLP). CD8+ T-cell responses were absent in JME peripheral blood, and in age- and sex-matched controls. However, CD4+ Th1 and Th17 responses were detected in JME peripheral blood versus controls. Cervical LN MNCs from eight of nine JME animals had CD3+ T cells specific for MOG, MBP, and PLP that were not detected in controls. Mapping myelin epitopes revealed a heterogeneity in responses among JME animals. Comparison of myelin antigen sequences with those of JM rhadinovirus (JMRV), which is found in JME lesions, identified six viral open reading frames (ORFs) with similarities to myelin antigen sequences. Overlapping peptides to these JMRV ORFs did not induce IFNγ responses. INTERPRETATIONS: JME possesses an immune-mediated component that involves both CD4+ and CD8+ T cells specific for myelin antigens. JME may shed new light on inflammatory demyelinating disease pathogenesis linked to gamma-herpesvirus infection.


Subject(s)
Demyelinating Diseases/diagnostic imaging , Demyelinating Diseases/pathology , Encephalomyelitis/diagnostic imaging , Encephalomyelitis/pathology , Myelin Sheath/immunology , T-Lymphocytes/immunology , Animals , Autoimmune Diseases/immunology , Demyelinating Diseases/virology , Encephalomyelitis/virology , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Epitopes/genetics , Epitopes/immunology , Female , Herpesviridae Infections/immunology , Interferon-gamma/analysis , Interleukin-17/analysis , Macaca fuscata , Male , Monkey Diseases , Myelin Basic Protein/genetics , Myelin Basic Protein/immunology , Myelin Proteolipid Protein/genetics , Myelin Proteolipid Protein/immunology , Myelin Sheath/pathology , Myelin-Oligodendrocyte Glycoprotein/genetics , Myelin-Oligodendrocyte Glycoprotein/immunology , Rhadinovirus/genetics , Rhadinovirus/immunology
20.
BMC Mol Biol ; 11: 47, 2010 Jun 21.
Article in English | MEDLINE | ID: mdl-20565976

ABSTRACT

BACKGROUND: Normalization of gene expression data refers to the comparison of expression values using reference standards that are consistent across all conditions of an experiment. In PCR studies, genes designated as "housekeeping genes" have been used as internal reference genes under the assumption that their expression is stable and independent of experimental conditions. However, verification of this assumption is rarely performed. Here we assess the use of gene microarray analysis to facilitate selection of internal reference sequences with higher expression stability across experimental conditions than can be expected using traditional selection methods.We recently demonstrated that relative gene expression from qRT-PCR data normalized using GAPDH, ALG9 and RPL13A expression values mirrored relative expression using quantile normalization in Robust Multichip Analysis (RMA) on the Affymetrix GeneChip rhesus Macaque Genome Array.Having shown that qRT-PCR and Affymetrix GeneChip data from the same hormone replacement therapy (HRT) study yielded concordant results, we used quantile-normalized gene microarray data to identify the most stably expressed among probe sets for prospective internal reference genes across three brain regions from the HRT study and an additional study of normally menstruating rhesus macaques (cycle study). Gene selection was limited to 575 previously published human "housekeeping" genes. Twelve animals were used per study, and three brain regions were analyzed from each animal. Gene expression stabilities were determined using geNorm, NormFinder and BestKeeper software packages. RESULTS: Sequences co-annotated for ribosomal protein S27a (RPS27A), and ubiquitin were among the most stably expressed under all conditions and selection criteria used for both studies. Higher annotation quality on the human GeneChip facilitated more targeted analysis than could be accomplished using the rhesus GeneChip. In the cycle study, multiple probe sets annotated for actin, gamma 1 (ACTG1) showed high signal intensity and were among the most stably expressed. CONCLUSIONS: Using gene microarray analysis, we identified genes showing high expression stability under various sex-steroid environments in different regions of the rhesus macaque brain. Use of quantile-normalized microarray gene expression values represents an improvement over traditional methods of selecting internal reference genes for PCR analysis.


Subject(s)
Gene Expression Profiling/standards , Gene Expression , Macaca mulatta/genetics , Microarray Analysis/standards , Reverse Transcriptase Polymerase Chain Reaction/standards , Algorithms , Animals , Brain/anatomy & histology , Brain/physiology , Female , Gene Expression Profiling/methods , Hormone Replacement Therapy , Humans , Menstruation/genetics , Microarray Analysis/methods , Reference Standards , Reverse Transcriptase Polymerase Chain Reaction/methods
SELECTION OF CITATIONS
SEARCH DETAIL