Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Dairy Sci ; 107(5): 2832-2849, 2024 May.
Article in English | MEDLINE | ID: mdl-37949403

ABSTRACT

We investigated how concentrate feeding during the last 21 d of pregnancy affects reticular pH, inflammatory response, dry matter (DM) intake, and production performance of dairy cows. We hypothesized that adding concentrates to dairy cows' diet before calving reduces the decrease in reticular pH postpartum and thus alleviates inflammatory response. We also hypothesized that prepartum concentrate feeding increases DM intake postpartum and consequently improves milk performance. Two feeding experiments were conducted using a randomized complete block design. In each experiment, 16 multiparous Finnish Ayrshire cows were paired based on parity, expected calving date, body weight, and milk yield of the previous lactation. Within the pairs, cows were randomly allocated on one of the 2 dietary treatments 21 d before expected calving. In experiment 1 (Exp1), diets were ad libitum feeding of grass silage as a sole feed or supplemented with increasing amounts of concentrate offered separately (increased to 4 kg/d by d -7). In experiment 2 (Exp2), diets were ad libitum feeding of a total mixed ration containing either grass silage, barley straw, and rapeseed meal (64%, 28%, and 8% on DM basis, respectively) or grass silage, barley straw, and cereal-based concentrate mixture (49%, 29%, and 30% on DM basis, respectively). Following calving, all the cows were fed similarly and observed until d 56 postpartum. Feed intake and milk yield were recorded daily, and reticular pH was monitored continuously by reticular pH bolus. Blood samples were collected at the beginning of the experiments, 7 d before the expected calving date, 1 d (in Exp1) or 5 d (in Exp2), 10 d, and 21 d postpartum. In Exp1, concentrate feeding increased metabolizable energy intake and tended to increase DM and crude protein intake prepartum. Moreover, prepartum concentrate feeding increased the concentrations of plasma ß-hydroxybutyrate and insulin, but differences in nonesterified fatty acids, glucose, or acute phase proteins were not observed. After calving, prepartum diet did not affect DM or nutrient intake, plasma energy metabolites, or milk production in Exp1. Although prepartum concentrate feeding increased reticular pH on the first day of lactation, it elevated plasma concentrations of serum amyloid-A and haptoglobin postpartum in the grass silage-based diet. In Exp2, adding concentrates to the diet based on a mixture of grass silage and straw did not affect prepartum DM intake or plasma concentrations of nonesterified fatty acids, glucose, or insulin. Adding concentrates to prepartum diet increased plasma concentration of ß-hydroxybutyrate before calving as in Exp1. After calving, prepartum concentrate feeding increased DM and nutrient intake during the second week of lactation in Exp2, but no effects were observed thereafter. In contrast to our hypothesis, prepartum concentrate feeding decreased reticular pH after calving in Exp2, but no differences in inflammatory markers were observed. Based on this study, close-up concentrate feeding in diets based on grass silage with or without straw does not alleviate the decrease in reticular pH or mitigate inflammatory response postpartum.

2.
J Dairy Sci ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38642648

ABSTRACT

The objective of this experiment was to investigate the effect of lipid from rapeseed cake and oats on ruminal CH4 emission and lactational performance of dairy cows. Twelve lactating Nordic Red cows, of which 4 primiparous, and averaging (±SD) 48 ± 22.9 DIM, 37.8 ± 7.14 kg/d milk yield were enrolled in a switch-back design experiment with 3 periods of 4 wk each. The cows were assigned into 6 pairs based on parity and days-in-milk, milk yield, and body weight at the beginning of the experiment. The experimental treatments were 1) rapeseed cake and oats (RSC+O), and 2) rapeseed meal and barley (RSM+B) as the concentrate feeds. Cows in each pair were randomly assigned to one of the 2 groups, which received the treatments in 2 different sequences, i.e., group 1 received RSC+O in period 1 and 3, and RSM+B in period 2, whereas group 2 was fed RSM+B in period 1 and 3, and RSC+O in period 2. The diets consisted of a partially mixed ration with grass silage mixed with either oats or barley, according to the treatment sequence, and the rapeseed cake or meal being mixed into a pellet with either oats or barley according to the treatments, and a mineral mix. The pellet was delivered at a fixed amount (i.e., 6 kg/d for multiparous and 5 kg/d for the primiparous cows) from the milking robot. The actual forage to concentrate ratios for RSC+O and RSM+B were 51:49 and 52:48, respectively, with NDF concentrations of 41.5 and 36.0% and CP concentrations of 17.0 and 16.7% of diet DM. Dry matter intake, milk yield, and gas exchange (with a GreenFeed system attached to the milking robot) were recorded daily, and milk composition and spot fecal samples were collected during the last wk of each period. Based on feed analysis, and dry matter intake of the cows during the experiment, the total fat content of the experimental diets was 4.1 and 2.7% of DM for RSC+O and RSM+B diets, respectively. Dry matter intake was 1.5 kg/d lower, and milk yield tended to be 1.0 kg/d greater for RSC+O vs. RSM+B. There were no differences in energy-corrected milk yield and milk composition between the treatments, while milk metabolizable energy efficiency was greater for cows fed RSC+O than RSM+B. Methane yield (g/kg dry matter intake) did not differ between treatments, but CH4 production (g/d) was 9.4% and CH4 intensity as g/kg energy-corrected milk was 11.7% lower for RSC+O vs. RSM+B. The lower CH4 production was likely caused by the lower DMI and fiber digestibility, observed with the RSC+O diet. In addition, the greater lipid intake also contributed to lower rate of fermentation and subsequent decrease in CH4 production. Overall, feeding rapeseed cake with oats in a grass silage-based diet increased feed efficiency while decreasing CH4 emission intensity in lactating cows. This provides a practical way of mitigating ruminal CH4 emission from dairy operations while maintaining milk production with commonly utilized feed stuffs in Nordic conditions.

3.
J Dairy Sci ; 106(10): 6903-6920, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37230877

ABSTRACT

The objective of this experiment was to investigate the effect of forage type [red clover (51%)-grass silage, i.e., RCG; vs. faba bean (66%)-grass silage, i.e., FBG] and concentrate type (faba bean, FB; vs. rapeseed expeller, RE) on lactational performance, milk composition and nitrogen (N) utilization in lactating dairy cows. Eight lactating multiparous Nordic Red cows were used in a replicated 4 × 4 Latin Square experiment, with 21-d periods, in a 2 × 2 factorial arrangement of treatments. The experimental treatments were as follows: (1) RCG with RE, (2) RCG with FB, (3) FBG with RE, and (4) FBG with FB. Inclusion rates of RE and FB were isonitrogenous. Crude protein contents of the experimental diets were 16.3, 15.9, 18.1, and 17.9% of dry matter, respectively. All diets included oats and barley and were fed ad libitum as total mixed rations with forage-to-concentrate ratio of 55:45. Dry matter intake and milk yield were recorded daily, and spot samples of urine, feces, and blood were collected at the end of each experimental period. Dry matter intake did not differ across diets, averaging 26.7 kg/d. Milk yield averaged 35.6 kg/d and was 1.1 kg/d greater for RCG versus FBG, and milk urea N concentration was lower for RCG compared with FBG. Milk yield was 2.2 kg/d and milk protein yield 66 g/d lower for FB versus RE. Nitrogen intake, urinary N, and urinary urea N excretions were lower, and milk N excretion tended to be lower for RCG compared with FBG. The proportion of the dietary N excreted as fecal N was larger in cows fed RCG than for those fed FBG, and the opposite was true for urinary N. We detected an interaction for milk N as percentage of N intake: it increased with RE compared with FB for RCG-based diet, but only a marginal increase was observed for FBG-based diet. Plasma concentration of His and Lys were lower for RCG than for FBG, whereas His tended to be greater and Lys lower for FB compared with RE. Further, plasma Met concentration was around 26% lower for FB than for RE. Of milk fatty acids, saturated fatty acids were decreased by RCG and increased by FB compared with FBG and RE, respectively, whereas monounsaturated fatty acids were increased by RCG versus FBG, and were lower for FB than for RE. In particular, 18:1n-9 concentration was lower for FB compared with RE. Polyunsaturated fatty acids, such as 18:2n-6 and 18:3n-3, were greater for RCG than for FBG, and 18:2n-6 was greater and 18:3n-3 was lower for FB versus RE. In addition, cis-9,trans-11 conjugated linoleic acid was lower for FB compared with RE. Faba bean whole-crop silage and faba bean meal have potential to be used as a part of dairy cow rations, but further research is needed to improve their N efficiency. Red clover-grass silage from a mixed sward, without inorganic N fertilizer input, combined with RE, resulted in the greatest N efficiency in the conditions of this experiment.


Subject(s)
Brassica napus , Brassica rapa , Fabaceae , Trifolium , Vicia faba , Female , Cattle , Animals , Silage/analysis , Vicia faba/metabolism , Brassica napus/metabolism , Lactation , Fabaceae/metabolism , Amino Acids/metabolism , Digestion , Diet/veterinary , Vegetables/metabolism , Fatty Acids/metabolism , Avena/metabolism , Trifolium/metabolism , Amines/metabolism , Nitrogen/metabolism , Urea/metabolism
4.
J Dairy Sci ; 106(5): 3217-3232, 2023 May.
Article in English | MEDLINE | ID: mdl-37028967

ABSTRACT

Fava bean offers a sustainable home-grown protein source for dairy cows, but fava bean protein is extensively degraded in the rumen and has low Met concentration. We studied the effects of protein supplementation and source on milk production, rumen fermentation, N use, and mammary AA utilization. The treatments were unsupplemented control diet, and isonitrogenously given rapeseed meal (RSM), processed (dehulled, flaked, and heated) fava bean without (TFB) or with rumen-protected (RP) Met (TFB+). All diets consisted of 50% grass silage and 50% cereal-based concentrate including studied protein supplement. The control diet had 15% of crude protein and protein-supplemented diets 18%. Rumen-protected Met in TFB+ corresponded to 15 g/d of Met absorbed in the small intestine. Experimental design was a replicated 4 × 4 Latin square with 3-wk periods. The experiment was conducted using 12 multiparous mid-lactation Nordic Red cows, of which 4 were rumen cannulated. Protein supplementation increased dry matter intake (DMI), and milk (31.9 vs. 30.7 kg/d) and milk component yields. Substituting RSM with TFB or TFB+ decreased DMI and AA intake but increased starch intake. There were no differences in milk yield or composition between RSM diet and TFB diets. Rumen-protected Met did not affect DMI, or milk or milk component yields but increased milk protein concentration in comparison to TFB. There were no differences in rumen fermentation except for increased ammonium-N concentration with the protein-supplemented diets. Nitrogen-use efficiency for milk production was lower for the supplemented diets versus control diet but tended to be greater for TFB and TFB+ versus RSM. Protein supplementation increased plasma essential AA concentration but there were no differences between TFB diets and RSM. Rumen-protected Met clearly increased plasma Met concentration (30.8 vs. 18.2 µmol/L) but did not affect other AA. Absence of differences between RSM and TFB in milk production together with limited effects of RP Met suggest that TFB is a potential alternative protein source for dairy cattle.


Subject(s)
Brassica napus , Brassica rapa , Vicia faba , Female , Cattle , Animals , Methionine , Poaceae/metabolism , Brassica napus/metabolism , Vicia faba/metabolism , Silage/analysis , Rumen/metabolism , Dietary Supplements , Diet/veterinary , Lactation , Racemethionine/metabolism , Racemethionine/pharmacology
5.
J Dairy Sci ; 102(8): 7102-7117, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31155260

ABSTRACT

Alternative protein sources such as microalgae and faba beans may have environmental benefits over rapeseed. We studied the effects of rapeseed meal (RSM) or faba beans (FB) as a sole protein feed or as protein feeds partially substituted with Spirulina platensis (spirulina) microalgae on milk production, N utilization, and AA metabolism of dairy cows. Eight multiparous Finnish Ayrshire cows (113 ± 36.3 d in milk; mean ± SD) were used in a balanced, replicated 4 × 4 Latin square with 2 × 2 factorial arrangement of treatments and 21-d periods. Four cows in one Latin square were rumen cannulated. Treatments were 2 isonitrogenously fed protein sources, RSM or rolled FB, or one of these sources with half of its crude protein substituted by spirulina (RSM-SPI and FB-SPI). Cows had ad libitum access to total mixed rations consisting of grass silage, barley, sugar beet pulp, minerals, and experimental protein feed. The substitution of RSM with FB did not affect dry matter intake (DMI) but decreased neutral detergent fiber intake and increased the digestibility of other nutrients. Spirulina in the diet decreased DMI and His intake. Spirulina had no effect on Met intake in cows on RSM diets but increased it in those on FB diets. Energy-corrected milk (ECM) and protein yields were decreased when RSM was substituted by FB. Milk and lactose yields were decreased in cows on the RSM-SPI diet compared with the RSM diet but increased in those on FB-SPI compared with FB. The opposite was true for milk fat and protein concentrations; thus, spirulina in the diet did not affect ECM. Feed conversion efficiency (ECM:DMI) increased in cows on FB diets with spirulina, whereas little effect was observed for those on RSM diets. The substitution of RSM by FB decreased arterial concentration of Met and essential AA. Spirulina in the diet increased milk urea N and ruminal NH4-N and decreased the efficiency of N utilization in cows on RSM diets, whereas those on FB diets showed opposite results. Met likely limited milk production in cows on the FB diet as evidenced by the decrease in arterial Met concentration and milk protein yield when RSM was substituted by FB. The results suggest the potential to improve milk production response to faba beans with supplementation of Met-rich feeds such as spirulina. This study also confirmed spirulina had poorer palatability than RSM and FB despite total mixed ration feeding and lower milk production when spirulina partially replaced RSM.


Subject(s)
Amino Acids/metabolism , Cattle/physiology , Microalgae , Milk/metabolism , Nitrogen/metabolism , Spirulina , Animals , Brassica rapa , Diet/veterinary , Female , Lactation , Lactose/analysis , Milk/drug effects , Milk Proteins/analysis , Silage/analysis , Vicia faba
6.
J Dairy Sci ; 102(9): 7904-7916, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31301831

ABSTRACT

The inclusion of feed intake and efficiency traits in dairy cow breeding goals can lead to increased risk of metabolic stress. An easy and inexpensive way to monitor postpartum energy status (ES) of cows is therefore needed. Cows' ES can be estimated by calculating the energy balance from energy intake and output and predicted by indicator traits such as change in body weight (ΔBW), change in body condition score (ΔBCS), milk fat:protein ratio (FPR), or milk fatty acid (FA) composition. In this study, we used blood plasma nonesterified fatty acids (NEFA) concentration as a biomarker for ES. We determined associations between NEFA concentration and ES indicators and evaluated the usefulness of body and milk traits alone, or together, in predicting ES of the cow. Data were collected from 2 research herds during 2013 to 2016 and included 137 Nordic Red dairy cows, all of which had a first lactation and 59 of which also had a second lactation. The data included daily body weight, milk yield, and feed intake and monthly BCS. Plasma samples for NEFA were collected twice in lactation wk 2 and 3 and once in wk 20. Milk samples for analysis of fat, protein, lactose, and FA concentrations were taken on the blood sampling days. Plasma NEFA concentration was higher in lactation wk 2 and 3 than in wk 20 (0.56 ± 0.30, 0.43 ± 0.22, and 0.13 ± 0.06 mmol/L, respectively; all means ± standard deviation). Among individual indicators, C18:1 cis-9 and the sum of C18:1 in milk had the highest correlations (r = 0.73) with NEFA. Seven multiple linear regression models for NEFA prediction were developed using stepwise selection. Of the models that included milk traits (other than milk FA) as well as body traits, the best fit was achieved by a model with milk yield, FPR, ΔBW, ΔBCS, FPR × ΔBW, and days in milk. The model resulted in a cross-validation coefficient of determination (R2cv) of 0.51 and a root mean squared error (RMSE) of 0.196 mmol/L. When only milk FA concentrations were considered in the model, NEFA prediction was more accurate using measurements from evening milk than from morning milk (R2cv = 0.61 vs. 0.53). The best model with milk traits contained FPR, C10:0, C14:0, C18:1 cis-9, C18:1 cis-9 × C14:0, and days in milk (R2cv = 0.62; RMSE = 0.177 mmol/L). The most advanced model using both milk and body traits gave a slightly better fit than the model with only milk traits (R2cv = 0.63; RMSE = 0.176 mmol/L). Our findings indicate that ES of cows in early lactation can be monitored with moderately high accuracy by routine milk measurements.


Subject(s)
Cattle/physiology , Energy Intake , Energy Metabolism , Fatty Acids/analysis , Milk Proteins/analysis , Milk/chemistry , Animals , Body Weight , Breeding , Fatty Acids, Nonesterified/analysis , Female , Lactation , Lactose/analysis , Milk/metabolism , Phenotype , Postpartum Period
7.
J Dairy Sci ; 101(12): 11364-11383, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30292556

ABSTRACT

High energy intake in the dry period has reportedly had adverse effects on mobilization of body reserves, dry matter intake, and productivity of dairy cows. We investigated whether grass silage (GS) fed ad libitum (high energy intake, HEI; 141% of daily metabolizable energy requirements) in an 8-wk dry period affects metabolic adaptation-specifically, peripheral insulin resistance-compared with a total mixed ration consisting of GS, wheat straw, and rapeseed meal (55/40/5%; controlled energy intake, CEI; 108% of metabolizable energy/d) fed ad libitum. Multiparous Ayrshire dairy cows (n = 16) were used in a randomized complete block design until 8 wk after parturition. Commercial concentrates were fed 1 and 2 kg/d during the last 10 to 6 and 5 to 0 d before the expected calving date, respectively. Postpartum, a similar lactation diet with ad libitum access to GS and increasing concentrate allowance (maximum of 16 kg/d) was offered to all. The HEI group gained more body weight and had higher plasma insulin, glucose, and ß-hydroxybutyrate concentrations than the CEI group prepartum. Postpartal plasma glucose tended to be higher and milk yield was greater from wk 5 onward for HEI compared with CEI cows. An intravenous glucose tolerance test (IVGTT) was performed at -13 ± 5 d and 9 ± 1 d relative to calving. The HEI cows had greater insulin response to glucose load and smaller area under the response curve for glucose than CEI cows in prepartal IVGTT. Thus, compensatory insulin secretion adapted to changes in insulin sensitivity of the peripheral tissues, preserving glucose tolerance of HEI cows. Higher insulin levels were needed in HEI cows than in CEI cows to elicit a similar decrement of nonesterified fatty acid concentration in prepartal IVGTT, suggesting reduced inhibition of lipolysis by insulin in HEI cows before parturition. In conclusion, high energy intake of moderately digestible GS with low concentrate feeding in the close-up dry period did not have adverse effects on metabolic adaptation, insulin sensitivity, and body mobilization after parturition. Instead, this feeding regimen was more beneficial to early-lactation performance than GS-based total mixed ration diluted with wheat straw.


Subject(s)
Cattle/metabolism , Energy Metabolism , Insulin Resistance , Poaceae/metabolism , Silage/analysis , 3-Hydroxybutyric Acid/metabolism , Animal Feed/analysis , Animals , Body Weight , Cattle/growth & development , Diet/veterinary , Energy Intake , Fatty Acids, Nonesterified/blood , Female , Glucose/metabolism , Insulin/blood , Lactation , Milk/metabolism , Parturition , Postpartum Period/metabolism , Pregnancy
8.
J Dairy Sci ; 100(7): 5266-5280, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28501410

ABSTRACT

We assessed whether high energy intake during the early dry period [144% of metabolizable energy (ME) requirements/d] followed by a gradual restriction of energy intake in the close-up dry period (119% of ME/d; HEI) impaired whole-body insulin sensitivity compared with a controlled energy intake (100% of ME/d; CEI) throughout the 6-wk dry period. Multiparous Ayrshire dairy cows (n = 16) were blocked by body weight, body condition score, and expected date of parturition and were used in a randomized complete block design until 10 d after parturition. Cows were fed either HEI or CEI diets based on grass silage during the first 3 wk of the dry period and grass silage supplemented with a commercial concentrate (30% of ME intake) during the final 3 wk of gestation. After calving, all cows were fed grass silage ad libitum and an increasing amount of commercial concentrate (maximum 9 kg at d 10 postpartum). Intravenous glucose tolerance tests (IVGTT) and intravenous insulin challenges were performed -10 ± 5 d (n = 15) and +10 ± 1 d (n = 14) relative to parturition. Following glucose injection, we did not find any treatment effects on glucose and insulin responses. The prepartal nonesterified fatty acid (NEFA) response of the HEI group was blunted, basal NEFA and the decrement of NEFA were smaller, and the area under the response curve (AUC) of NEFA was less negative in HEI cows than in CEI cows. The NEFA response reversed after parturition; the NEFA AUC of the HEI group was more negative than that of the CEI group. We did not find similar responses after insulin injection. Across the treatments, NEFA AUC correlated strongly with the basal NEFA concentration during the IVGTT pre- and postpartum. Calculated and model-based indices characterizing the overall glucose tolerance and ß-cell function and the insulin sensitivity were higher after parturition than during the dry period. Consistent with the lower basal insulin, the acute insulin release after the glucose infusion was smaller in postpartal IVGTT than in prepartal IVGTT. The results suggest that whole-body insulin sensitivity of the cows increased after parturition. However, the role of peripheral insulin sensitivity in the regulation of glucose partitioning seems to be minor relative to the major change in insulin secretion and clearance during the periparturient period.


Subject(s)
Diet , Energy Intake , Energy Metabolism , Fatty Acids, Nonesterified/metabolism , Insulin Resistance , Insulin/administration & dosage , Parturition/metabolism , Silage , Animals , Area Under Curve , Blood Glucose/metabolism , Body Weight , Cattle , Female , Glucose/administration & dosage , Glucose Tolerance Test/veterinary , Insulin/metabolism , Lactation , Postpartum Period , Pregnancy
9.
J Dairy Sci ; 100(1): 305-324, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27865509

ABSTRACT

Camelina is an ancient oilseed crop that produces an oil rich in cis-9,cis-12 18:2 (linoleic acid, LA) and cis-9,cis-12,cis-15 18:3 (α-linolenic acid, ALA); however, reports on the use of camelina oil (CO) for ruminants are limited. The present study investigated the effects of incremental CO supplementation on animal performance, milk fatty acid (FA) composition, and milk sensory quality. Eight Finnish Ayrshire cows (91d in milk) were used in replicated 4×4 Latin squares with 21-d periods. Treatments comprised 4 concentrates (12kg/d on an air-dry basis) based on cereals and camelina expeller containing 0 (control), 2, 4, or 6% CO on an air-dry basis. Cows were offered a mixture of grass and red clover silage (RCS; 1:1 on a dry matter basis) ad libitum. Incremental CO supplementation linearly decreased silage and total dry matter intake, and linearly increased LA, ALA, and total FA intake. Treatments had no effect on whole-tract apparent organic matter or fiber digestibility and did not have a major influence on rumen fermentation. Supplements of CO quadratically decreased daily milk and lactose yields and linearly decreased milk protein yield and milk taste panel score from 4.2 to 3.6 [on a scale of 1 (poor) to 5 (excellent)], without altering milk fat yield. Inclusion of CO linearly decreased the proportions of saturated FA synthesized de novo (4:0 to 16:0), without altering milk fat 18:0, cis-9 18:1, LA, and ALA concentrations. Milk fat 18:0 was low (<5g/100g of FA) across all treatments. Increases in CO linearly decreased the proportions of total saturates from 58 to 45g/100g of FA and linearly enriched trans-11 18:1, cis-9,trans-11 18:2, and trans-11,cis-15 18:2 from 5.2, 2.6, and 1.7 to 11, 4.3, and 5.8g/100g of FA, respectively. Furthermore, CO quadratically decreased milk fat trans-10 18:1 and linearly decreased trans-10,cis-12 18:2 concentration. Overall, milk FA composition on all treatments suggested that one or more components in camelina seeds may inhibit the complete reduction of 18-carbon unsaturates in the rumen. In conclusion, CO decreased the secretion of saturated FA in milk and increased those of the trans-11 biohydrogenation pathway or their desaturation products. Despite increasing the intake of 18-carbon unsaturated FA, CO had no effect on the secretions of 18:0, cis-9 18:1, LA, or ALA in milk. Concentrates containing camelina expeller and 2% CO could be used for the commercial production of low-saturated milk from grass- and RCS-based diets without major adverse effects on animal performance.


Subject(s)
Milk/metabolism , Silage , Animals , Cattle , Diet/veterinary , Fatty Acids/metabolism , Female , Lactation/drug effects , Poaceae/metabolism , Trifolium/metabolism
10.
J Dairy Sci ; 99(10): 7993-8006, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27522411

ABSTRACT

The objective of this study was to evaluate the production and physiological responses of dairy cows to the substitution of fava bean for rapeseed meal at 2 protein supplementation levels in grass silage-based diets. We used 6 primiparous and 6 multiparous Finnish Ayrshire cows in a cyclic changeover trial with a 2×3 factorial arrangement of treatments. The experimental diets consisted of formic acid-treated timothy-meadow fescue silage and 3 isonitrogenous concentrates containing either rapeseed meal, fava bean, or a 1:1 mixture of rapeseed meal and fava bean at low and high inclusion rates, resulting in concentrate crude protein (CP) levels of 15.4 and 19.0% in dry matter. Silage dry matter intake decreased linearly when rapeseed meal was replaced with fava bean, the negative effect being more distinct at the high CP level than the low (-2.3 vs. -0.9kg/d, respectively). Similarly, milk and milk protein yields decreased linearly with fava bean, the change tending to be greater at the high CP level than the low. Yield of milk fat was lower for fava bean compared with rapeseed meal, the difference showing no interaction with CP level. Especially at the high CP level, milk urea concentration was higher with fava bean compared with rapeseed meal indicating better utilization of protein from the rapeseed meal. The apparent total-tract organic matter digestibility did not differ between treatments at the low CP level, but digestibility was higher for fava bean than for rapeseed meal at the high CP level. Plasma concentrations of essential amino acids, including methionine and lysine, were lower for fava bean than for rapeseed meal. Compared with rapeseed meal, the use of fava bean in dairy cow diets as the sole protein supplement decreased silage intake and milk production in highly digestible formic acid-treated grass silage-based diets.


Subject(s)
Brassica rapa , Silage , Animal Feed , Animals , Cattle , Diet/veterinary , Digestion , Female , Lactation , Milk/chemistry , Poaceae , Rumen/metabolism , Vicia faba
11.
J Dairy Sci ; 98(8): 5515-28, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26026764

ABSTRACT

Prepartal energy overfeeding may predispose cows to a state of increased insulin resistance with greater lipolysis after parturition. The aim of the study was to evaluate the effects of prepartal overfeeding in terms of abundant grass silage ration on the liver and subcutaneous adipose tissue (SAT) gene expression around parturition. Sixteen multiparous Finnish Ayrshire dairy cows were fed ad libitum either grass silage [high energy, HE; 144 MJ/d of metabolizable energy (ME) intake, n=8] or a mixture of grass silage, wheat straw, and rapeseed meal [55:40:5 (CON), 109 MJ/d of ME, n=8] during the dry period (58.2±4.89 d, mean ± standard deviation). Tissue biopsies and blood samples were collected at -14 (±4.98), 1, and 7 d relative to the actual parturition date. The HE cows had greater total dry matter intake, ME intake, and ME balance during the dry period than the CON cows. Compared with CON, the increases in body weight and body condition score were greater in HE during the dry period. Milk yield during the first 2 wk of lactation was not different between the groups. Plasma glucose, nonesterified fatty acids, insulin, glucagon, and ß-hydroxybutyrate did not differ between the groups during the transition period. Dietary treatment did not affect hepatic triglyceride content; however, a delayed increase in hepatic total lipid content was observed in the HE cows at d 1 postpartum. Hepatic cytosolic phosphoenolpyruvate carboxykinase 1 mRNA expression was lower in HE than in CON at d 1 and 7 postpartum. Adiponectin receptor 1 and 2 mRNA abundance tended to be lower in SAT of HE than CON. Lower lipoprotein lipase, leptin, and stearoyl-coenzyme A desaturase mRNA abundances were observed at d 7 postpartum in SAT of the HE cows compared with the CON cows. We concluded that prepartal ad libitum feeding of grass silage may decrease insulin sensitivity and lipogenesis in SAT during peripartal period and may attenuate the increase of hepatic gluconeogenic capacity from propionate compared with a controlled-energy diet.


Subject(s)
Cattle/physiology , Diet/veterinary , Liver/metabolism , Parturition/physiology , Poaceae , Subcutaneous Fat/metabolism , Animals , Blood Glucose/metabolism , Body Weight , Energy Intake , Female , Gluconeogenesis/genetics , Insulin Resistance , Lactation , Lipogenesis/genetics , Milk/metabolism , Postpartum Period , Pregnancy , RNA, Messenger/analysis , Silage , Transcription, Genetic
12.
Physiol Genomics ; 46(9): 328-37, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24569674

ABSTRACT

Overfeeding during the dry period may predispose cows to increased insulin resistance (IR) with enhanced postpartum lipolysis. We studied gene expression in the liver and subcutaneous adipose tissue (SAT) of 16 Finnish Ayrshire dairy cows fed either a controlled energy diet [Con, 99 MJ/day metabolizable energy (ME)] during the last 6 wk of the dry period or high-energy diet (High, 141 MJ/day ME) for the first 3 wk and then gradually decreasing energy allowance during 3 wk to 99 MJ/day ME before the expected parturition. Tissue biopsies were collected at -10, 1, and 9 days, and blood samples at -10, 1, and 7 days relative to parturition. Overfed cows had greater dry matter, crude protein, and ME intakes and ME balance before parturition. Daily milk yield, live weight, and body condition score were not different between treatments. The High cows tended to have greater plasma insulin and lower glucagon/insulin ratio compared with Con cows. No differences in circulating glucose, glucagon, nonesterified fatty acids and ß-hydroxybutyrate concentrations, and hepatic triglyceride contents were observed between treatments. Overfeeding compared with Con resulted in lower CPT1A and PCK1 and a tendency for lower G6PC and PC expression in the liver. The High group tended to have lower RETN expression in SAT than Con. No other effects of overfeeding on the expression of genes related to IR in SAT were observed. In conclusion, overfeeding energy prepartum may have compromised hepatic gluconeogenic capacity and slightly affected IR in SAT based on gene expression.


Subject(s)
Animal Nutritional Physiological Phenomena/physiology , Cattle/physiology , Energy Metabolism/physiology , Gene Expression Regulation, Developmental/physiology , Liver/metabolism , Peripartum Period/physiology , Subcutaneous Fat/metabolism , Adaptation, Physiological/physiology , Analysis of Variance , Animals , Bayes Theorem , DNA Primers/genetics , DNA, Complementary/genetics , Diet/veterinary , Eating/physiology , Female , Finland , Real-Time Polymerase Chain Reaction/veterinary
13.
Int J Immunopathol Pharmacol ; 26(4): 897-905, 2013.
Article in English | MEDLINE | ID: mdl-24355225

ABSTRACT

The objective of this study was to assess the expression of protease inhibitor 9, a granzyme B inhibitor, in human small intestine, and to evaluate its cytoprotective role in the celiac disease of children. Twelve subjects with untreated celiac disease and thirteen healthy controls were examined by endoscopy. The expression of protease inhibitor 9 was analyzed immunohistochemically from duodenal biopsies and compared to granzyme B expression, apoptosis rate, number of intraepithelial lymphocytes and villus and crypt height data from the biopsies. We discovered that protease inhibitor 9 is expressed in the cytoplasm of the duodenal epithelial cells in the majority of cases. The enterocyte expression of protease inhibitor 9 was lower in celiac disease patients than in controls. Protease inhibitor 9 expression also showed a negative correlation with the number of apoptotic cells, overall density of granzyme B expressing intraepithelial lymphocytes, the height of the crypts and the severity of villous atrophy in duodenum. Therefore, we conclude that the protease inhibitor 9 is constantly expressed in the enterocytes of normal duodenum and the expression is decreased in celiac disease. These findings suggest that protease inhibitor 9 has a role in duodenal homeostasis and in the protection of enterocytes from misdirected granzyme B. Indeed, observed associations of lowered protease inhibitor 9 expression together with increased granzyme B expression, apoptosis rate and severity of villous atrophy suggest that impaired balance between granzyme B mediated cytotoxicity and its inhibition by protease inhibitor 9 forms an important factor in the pathogenesis of villous atrophy in celiac disease.


Subject(s)
Celiac Disease/pathology , Enterocytes/pathology , Granzymes/physiology , Intestinal Mucosa/pathology , Serpins/analysis , Adolescent , Apoptosis , Atrophy , Celiac Disease/metabolism , Child , Child, Preschool , Female , Granzymes/antagonists & inhibitors , Humans , Male
14.
Animal ; 17(9): 100917, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37573639

ABSTRACT

The efficiency with which a dairy cow utilises feed for the various physiological and metabolic processes can be evaluated by metrics that contrast realised feed intake with expected feed intake. In this study, we presented a new metric - regression on expected feed intake (ReFI). This metric is based on the idea of regressing DM intake (DMI) on expected DMI using a random regression model, where energy requirement formulations are applied for the calculation of expected DMI covariables. We compared this new metric with the metrics residual feed intake (RFI) and genetic residual feed intake (gRFI), by applying them on 18 581 feed efficiency records from 654 primiparous Nordic Red dairy cows. We estimated variance components for the three metrics and their respective genetic correlations with intake and production traits. In addition, we examined the phenotypes of superior cows. With ReFI, we estimated for feed efficiency a higher genetic variation (4.7%) and heritability (0.23) compared to applying RFI or gRFI. The ReFI metric was genetically uncorrelated with DMI and negatively correlated within energy-corrected milk (ECM), whereas the RFI metric was genetically positively correlated with DMI and metabolic BW. The gRFI metric was genetically positively correlated with DMI and uncorrelated with energy sink traits. Overall, the estimated SE were large. The ReFI metric resulted in a different ranking of cows compared to those based on RFI or gRFI and was superior in selecting the most efficient animals. When the selection was based on ReFI breeding values, then the 10% most efficient cows produced 12.3% more ECM per unit metabolisable energy intake, whereas the corresponding values were only 4.3 or 5.9% when using RFI or gRFI breeding values, respectively. Based on ReFI, superior cows had also higher milk production, whereas based on RFI or gRFI milk production either decreased or was unaffected, respectively. The superiority of the ReFI metric in selecting efficient cows was due to a better modelling of the expected feed intake. The ReFI metric simplified modelling of feed utilisation efficiency in dairy cattle and resulted in breeding values that are equal to percentages of feed saved.


Subject(s)
Animal Feed , Lactation , Female , Cattle/genetics , Animals , Lactation/genetics , Eating/genetics , Milk/metabolism , Energy Intake
15.
J Dairy Sci ; 95(7): 3812-25, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22720937

ABSTRACT

Late pregnancy is associated with moderate insulin resistance in ruminants. Reduced suppression of lipolysis by insulin facilitates mobilization of nonesterified fatty acids (NEFA) from adipose tissue, resulting in elevated plasma NEFA concentrations. Decrease in dry matter intake (DMI) before parturition leads to accelerated lipomobilization and increases plasma NEFA, which may further impair insulin sensitivity. The aim of the study was to evaluate the effects of elevation of plasma NEFA concentration by abomasal infusions tallow (TAL) or camelina oil (CAM) on whole-body responses to exogenous glucose and insulin. We further assessed whether CAM, rich in C18:3n-3, enhances whole-body insulin sensitivity compared with TAL. Six late-pregnant, second-parity, rumen-cannulated dry Ayrshire dairy cows fed grass silage to meet 95% of metabolizable energy requirements were used in a replicated 3 × 3 Latin square with 5-d periods and 5 recovery days between each period. Treatments consisted of abomasal infusion of 500 mL/d (430 g of lipids/d) of water (control), TAL, or CAM administered in 10 equal doses daily. Intravenous glucose tolerance test (IVGTT) and i.v. insulin challenge (IC) were performed on d 5 after 98 and 108 h of treatment infusions, respectively. Infusion of lipids increased basal plasma NEFA concentrations on d 5 (CAM: 0.25; TAL: 0.28; control: 0.17 mmol/L). Following glucose injection, the rate of glucose clearance (CR) was lower in lipid-treated cows (CAM: 1.34; TAL: 1.48; control: 1.74%/min) and time to reach half-maximal glucose concentration (T(1/2)) was longer (CAM: 54; TAL: 47; control: 42 min). Similar responses were observed after insulin injection. Increased plasma NEFA concentration tended to decrease insulin secretion in IVGTT. Infusion of CAM increased plasma C18:3n-3 content (CAM: 26.4; TAL: 16.1; control: 20.9 g/100g of fatty acids). Data suggest that CAM had an insulin-sensitizing effect, because the disposition index and insulin sensitivity index, derived from minimal model analysis, were higher in CAM than in TAL during IVGTT, and lower insulin concentrations during IC led to similar glucose clearance in CAM as in TAL. These results indicate that elevated plasma NEFA concentration per se induces whole-body insulin resistance in late-pregnant dry cows.


Subject(s)
Brassicaceae , Fats/pharmacology , Glucose/pharmacology , Insulin Resistance , Plant Oils/pharmacology , Abomasum , Animals , Blood Glucose/analysis , Catheterization/veterinary , Cattle , Fatty Acids, Nonesterified/blood , Female , Glucose Tolerance Test/veterinary , Pregnancy
16.
J Dairy Sci ; 94(9): 4413-30, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21854915

ABSTRACT

Five multiparous Finnish Ayrshire cows fed red clover silage-based diets were used in a 5 × 5 Latin square with 21-d experimental periods to evaluate the effects of various plant oils or camelina expeller on animal performance and milk fatty acid composition. Treatments consisted of 5 concentrate supplements containing no additional lipid (control), or 29 g/kg of lipid from rapeseed oil (RO), sunflower-seed oil (SFO), camelina-seed oil (CO), or camelina expeller (CE). Cows were offered red clover silage ad libitum and 12kg/d of experimental concentrates. Treatments had no effect on silage or total dry matter intake, whole-tract digestibility coefficients, milk yield, or milk composition. Plant oils in the diet decreased short- and medium-chain saturated fatty acid (6:0-16:0) concentrations, including odd- and branched-chain fatty acids and enhanced milk fat 18:0 and 18-carbon unsaturated fatty acid content. Increases in the relative proportions of cis 18:1, trans 18:1, nonconjugated 18:2, conjugated linoleic acid (CLA), and polyunsaturated fatty acids in milk fat were dependent on the fatty acid composition of oils in the diet. Rapeseed oil in the diet was associated with the enrichment of trans 18:1 (Δ4, 6, 7, 8, and 9), cis-9 18:1, and trans-7,cis-9 CLA, SFO resulted in the highest concentrations of trans-5, trans-10, and trans-11 18:1, Δ9,11 CLA, Δ10,12 CLA, and 18:2n-6, whereas CO enhanced trans-13-16 18:1, Δ11,15 18:2, Δ12,15 18:2, cis-9,trans-13 18:2, Δ11,13 CLA, Δ12,14 CLA, Δ13,15 CLA, Δ9,11,15 18:3, and 18:3n-3. Relative to CO, CE resulted in lower 18:0 and cis-9 18:1 concentrations and higher proportions of trans-10 18:1, trans-11 18:1, cis-9,trans-11 CLA, cis-9,trans-13 18:2, and trans-11,cis-15 18:2. Comparison of milk fat composition responses to CO and CE suggest that the biohydrogenation of unsaturated 18-carbon fatty acids to 18:0 in the rumen was less complete for camelina lipid supplied as an expeller than as free oil. In conclusion, moderate amounts of plant oils in diets based on red clover silage had no adverse effects on silage dry matter intake, nutrient digestion, or milk production, but altered milk fat composition, with changes characterized as a decrease in saturated fatty acids, an increase in trans fatty acids, and enrichment of specific unsaturated fatty acids depending on the fatty acid composition of lipid supplements.


Subject(s)
Fatty Acids/analysis , Milk/chemistry , Plant Oils/pharmacology , Silage , Trifolium , Animals , Brassicaceae , Cattle , Diet/veterinary , Dietary Supplements , Fatty Acids, Monounsaturated , Female , Lactation/drug effects , Rapeseed Oil , Silage/analysis , Sunflower Oil
17.
Scand J Surg ; 108(1): 61-66, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30182815

ABSTRACT

BACKGROUND AND AIMS:: Stenosis due to intimal hyperplasia and restenosis after initially successful percutaneous angioplasty are common reasons for failing arteriovenous fistulas. The aim of this study was to evaluate the effect of drug-coated balloons in the treatment of arteriovenous fistula stenosis. DESIGN:: Single-center, parallel group, randomized controlled trial. Block randomized by sealed envelope 1:1. MATERIALS AND METHODS:: A total of 39 patients with primary or recurrent stenosis in a failing native arteriovenous fistulas were randomized to drug-coated balloon (n = 19) or standard balloon angioplasty (n = 20). Follow-up was 1 year. Primary outcome measure was target lesion revascularization. RESULTS:: In all, 36 stenoses were analyzed; three patients were excluded due to technical failure after randomization. A total of 88.9% (16/18) in the drug-coated balloon group was revascularized or occluded within 1 year, compared to 22.2% (4/18) of the stenoses in the balloon angioplasty group (relative risk for drug-coated balloon 7.09). Mean time-to- target lesion revascularization was 110 and 193 days after the drug-coated balloon and balloon angioplasty, respectively (p = 0.06). CONCLUSIONS:: With 1-year follow-up, the target lesion revascularization-free survival after drug-coated balloon-treatment was clearly worse. The reason for this remains unknown, but it may be due to differences in the biological response to paclitaxel in the venous arteriovenous fistula-wall compared to its antiproliferative effect in the arterial wall after drug-coated balloon treatment of atherosclerotic occlusive lesions. Trial registration: ClinicalTrials.gov NCT03036241.


Subject(s)
Angioplasty, Balloon/methods , Arteriovenous Shunt, Surgical/adverse effects , Cardiovascular Agents/administration & dosage , Paclitaxel/administration & dosage , Vascular Patency/drug effects , Venous Insufficiency/therapy , Adult , Aged , Aged, 80 and over , Angioplasty, Balloon/instrumentation , Cardiovascular Agents/adverse effects , Coated Materials, Biocompatible/administration & dosage , Coated Materials, Biocompatible/adverse effects , Female , Follow-Up Studies , Humans , Kidney Failure, Chronic/therapy , Male , Middle Aged , Paclitaxel/adverse effects , Prospective Studies , Renal Dialysis/methods , Venous Insufficiency/drug therapy , Venous Insufficiency/etiology
18.
Vet Rec ; 160(17): 573-8, 2007 Apr 28.
Article in English | MEDLINE | ID: mdl-17468319

ABSTRACT

Data were collected on the housing, management and disease factors in the weaning and finishing units of 49 integrated pig herds, 24 of them with a high incidence of arthritis at slaughter (case herds) and 25 with a low incidence (control herds). A median of 5.2 per cent (range 3.7 to 12.4 per cent) of the slaughtered pigs in the case herds had arthritis at meat inspection, compared with 2.2 per cent (range 0.3 to 2.8 per cent) in the control herds. In the farrowing units, high clinical sign scores for the lactating sows and piglets less than one week old and a low age at castration were associated with the case herds. In the weaning units, the herds with open partitions between the pens were 5.6 times more likely to be a case herd than the herds with solid walls. A higher age at weaning and moving the piglets at weaning from the farrowing pen instead of the sows decreased the likelihood of being a case herd. In the finishing units, a higher score for clinical signs, using a proper hospital pen, disinfecting the pens between the groups and using a feeding plan increased the likelihood of being a case herd. In total, 145 condemned joints, a median of four (up to six per herd), were collected at the slaughterhouse. In the case herds, 71 of 76 joints (93.4 per cent) had lesions related to osteochondrosis and in the control herds 66 of 69 joints (95.6 per cent) had such lesions. Only two of 11 joints from the case herds and one of 12 joints from the control herds that were examined bacteriologically were positive for Stapylococcus aureus and/or Streptococcus species.


Subject(s)
Arthritis/veterinary , Swine Diseases/diagnosis , Abattoirs , Aging , Agriculture , Animal Husbandry , Animals , Arthritis/diagnosis , Case-Control Studies , Female , Finland , Male , Orchiectomy , Risk Factors , Swine
19.
Vet Rec ; 159(13): 406-9, 2006 Sep 23.
Article in English | MEDLINE | ID: mdl-16997996

ABSTRACT

An outbreak of the sheep-associated form of malignant catarrhal fever (MCF) in a Finnish sow herd was diagnosed by histopathology and confirmed by PCR. Several gilts and sows were suffering from high fever and anorexia and had aborted, and six of them had died. Typical signs of lymphoproliferation and vasculitis were observed histologically in several tissues, including the uterus. Ovine herpesvirus-2 (OvHV-2) was detected by PCR in two sows. Sequences of the OvHV-2 tegument protein gene obtained from the sows and from three cases of sheep-associated mcf in Finnish cattle were compared and found to be identical. These are the first confirmed cases of mcf in pigs in Finland.


Subject(s)
Herpesviridae/genetics , Malignant Catarrh/pathology , Swine Diseases/pathology , Animals , Cattle , Disease Outbreaks/veterinary , Finland/epidemiology , Genetic Variation , Herpesviridae/isolation & purification , Malignant Catarrh/epidemiology , Malignant Catarrh/virology , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/veterinary , Swine , Swine Diseases/epidemiology , Swine Diseases/virology
20.
Acta Vet Scand ; 46(4): 257-67, 2005.
Article in English | MEDLINE | ID: mdl-16398337

ABSTRACT

A hippurate-negative biovariant of Brachyspira pilosicoli (B. pilosicolihipp-) is occasionally isolated in diarrhoeic pigs in Finland, often concomitantly with hippurate-positive B. pilosicoli or Lawsonia intracellularis. We studied pathogenicity of B. pilosicolihipp- with special attention paid to avoiding co-infection with other enteric pathogens. Pigs were weaned and moved to barrier facilities at the age of 11 days. At 46 days, 8 pigs were inoculated with B. pilosicolihipp- strain Br1622, 8 pigs were inoculated with B. pilosicoli type strain P43/6/78 and 7 pigs were sham-inoculated. No signs of spirochaetal diarrhoea were detected; only one pig, inoculated with P43/6/78, had soft faeces from day 9 to 10 post inoculation. The pigs were necropsied between days 7 and 23 after inoculation. Live pigs were culture-negative for Brachyspira spp., but B. pilosicolihipp- was reisolated from necropsy samples of two pigs. The lesions on large colons were minor and did not significantly differ between the three trial groups. In silver-stained sections, invasive spirochaetes were detected in colonic mucosae of several pigs in all groups. Fluorescent in situ hybridisation for genus Brachyspira, B. pilosicoli and strain Br1622 was negative. However, in situ detection for members of the genus Leptospira was positive for spirochaete-like bacteria in the colonic epithelium of several pigs in both infected groups as well as in the control group. L. intracellularis, Salmonella spp., Yersinia spp. and intestinal parasites were not detected. The failure of B. pilosicoli strains to cause diarrhoea is discussed with respect to infectivity of the challenge strains, absence of certain intestinal pathogens and feed and management factors.


Subject(s)
Brachyspira/pathogenicity , Diarrhea/veterinary , Spirochaetales Infections/veterinary , Swine Diseases/microbiology , Weaning , Animals , Animals, Newborn , Diarrhea/microbiology , Feces/microbiology , Hippurates/analysis , Hippurates/metabolism , Random Allocation , Spirochaetales Infections/microbiology , Swine
SELECTION OF CITATIONS
SEARCH DETAIL