Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Nat Immunol ; 24(4): 585-594, 2023 04.
Article in English | MEDLINE | ID: mdl-36941399

ABSTRACT

Unlike other nucleotide oligomerization domain-like receptors, Nlrp10 lacks a canonical leucine-rich repeat domain, suggesting that it is incapable of signal sensing and inflammasome formation. Here we show that mouse Nlrp10 is expressed in distal colonic intestinal epithelial cells (IECs) and modulated by the intestinal microbiome. In vitro, Nlrp10 forms an Apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC)-dependent, m-3M3FBS-activated, polyinosinic:polycytidylic acid-modulated inflammasome driving interleukin-1ß and interleukin-18 secretion. In vivo, Nlrp10 signaling is dispensable during steady state but becomes functional during autoinflammation in antagonizing mucosal damage. Importantly, whole-body or conditional IEC Nlrp10 depletion leads to reduced IEC caspase-1 activation, coupled with enhanced susceptibility to dextran sodium sulfate-induced colitis, mediated by altered inflammatory and healing programs. Collectively, understanding Nlrp10 inflammasome-dependent and independent activity, regulation and possible human relevance might facilitate the development of new innate immune anti-inflammatory interventions.


Subject(s)
Apoptosis Regulatory Proteins , Inflammasomes , Mice , Humans , Animals , Inflammasomes/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Apoptosis , Caspase 1/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-1beta/metabolism , Adaptor Proteins, Signal Transducing/metabolism
2.
Nature ; 624(7992): 645-652, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38093014

ABSTRACT

People with diabetes feature a life-risking susceptibility to respiratory viral infection, including influenza and SARS-CoV-2 (ref. 1), whose mechanism remains unknown. In acquired and genetic mouse models of diabetes, induced with an acute pulmonary viral infection, we demonstrate that hyperglycaemia leads to impaired costimulatory molecule expression, antigen transport and T cell priming in distinct lung dendritic cell (DC) subsets, driving a defective antiviral adaptive immune response, delayed viral clearance and enhanced mortality. Mechanistically, hyperglycaemia induces an altered metabolic DC circuitry characterized by increased glucose-to-acetyl-CoA shunting and downstream histone acetylation, leading to global chromatin alterations. These, in turn, drive impaired expression of key DC effectors including central antigen presentation-related genes. Either glucose-lowering treatment or pharmacological modulation of histone acetylation rescues DC function and antiviral immunity. Collectively, we highlight a hyperglycaemia-driven metabolic-immune axis orchestrating DC dysfunction during pulmonary viral infection and identify metabolic checkpoints that may be therapeutically exploited in mitigating exacerbated disease in infected diabetics.


Subject(s)
Dendritic Cells , Diabetes Complications , Diabetes Mellitus , Disease Susceptibility , Hyperglycemia , Lung , Virus Diseases , Animals , Mice , Acetyl Coenzyme A/metabolism , Acetylation , Chromatin/genetics , Chromatin/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/pathology , Diabetes Complications/immunology , Diabetes Complications/metabolism , Diabetes Mellitus/genetics , Diabetes Mellitus/immunology , Diabetes Mellitus/metabolism , Glucose/metabolism , Histones/metabolism , Hyperglycemia/complications , Hyperglycemia/immunology , Hyperglycemia/metabolism , Lung/immunology , Lung/metabolism , Lung/virology , T-Lymphocytes/immunology , Virus Diseases/complications , Virus Diseases/immunology , Virus Diseases/mortality , Viruses/immunology , Disease Models, Animal , Humans
3.
Nature ; 600(7890): 713-719, 2021 12.
Article in English | MEDLINE | ID: mdl-34880502

ABSTRACT

Cigarette smoking constitutes a leading global cause of morbidity and preventable death1, and most active smokers report a desire or recent attempt to quit2. Smoking-cessation-induced weight gain (SCWG; 4.5 kg reported to be gained on average per 6-12 months, >10 kg year-1 in 13% of those who stopped smoking3) constitutes a major obstacle to smoking abstinence4, even under stable5,6 or restricted7 caloric intake. Here we use a mouse model to demonstrate that smoking and cessation induce a dysbiotic state that is driven by an intestinal influx of cigarette-smoke-related metabolites. Microbiome depletion induced by treatment with antibiotics prevents SCWG. Conversely, fecal microbiome transplantation from mice previously exposed to cigarette smoke into germ-free mice naive to smoke exposure induces excessive weight gain across diets and mouse strains. Metabolically, microbiome-induced SCWG involves a concerted host and microbiome shunting of dietary choline to dimethylglycine driving increased gut energy harvest, coupled with the depletion of a cross-regulated weight-lowering metabolite, N-acetylglycine, and possibly by the effects of other differentially abundant cigarette-smoke-related metabolites. Dimethylglycine and N-acetylglycine may also modulate weight and associated adipose-tissue immunity under non-smoking conditions. Preliminary observations in a small cross-sectional human cohort support these findings, which calls for larger human trials to establish the relevance of this mechanism in active smokers. Collectively, we uncover a microbiome-dependent orchestration of SCWG that may be exploitable to improve smoking-cessation success and to correct metabolic perturbations even in non-smoking settings.


Subject(s)
Gastrointestinal Microbiome , Smoking Cessation , Weight Gain , Animals , Cross-Sectional Studies , Dysbiosis/etiology , Dysbiosis/metabolism , Dysbiosis/pathology , Mice , Models, Animal , Smoking/metabolism , Smoking/pathology
4.
Nature ; 599(7886): 684-691, 2021 11.
Article in English | MEDLINE | ID: mdl-34789882

ABSTRACT

The three-dimensional (3D) structure of chromatin is intrinsically associated with gene regulation and cell function1-3. Methods based on chromatin conformation capture have mapped chromatin structures in neuronal systems such as in vitro differentiated neurons, neurons isolated through fluorescence-activated cell sorting from cortical tissues pooled from different animals and from dissociated whole hippocampi4-6. However, changes in chromatin organization captured by imaging, such as the relocation of Bdnf away from the nuclear periphery after activation7, are invisible with such approaches8. Here we developed immunoGAM, an extension of genome architecture mapping (GAM)2,9, to map 3D chromatin topology genome-wide in specific brain cell types, without tissue disruption, from single animals. GAM is a ligation-free technology that maps genome topology by sequencing the DNA content from thin (about 220 nm) nuclear cryosections. Chromatin interactions are identified from the increased probability of co-segregation of contacting loci across a collection of nuclear slices. ImmunoGAM expands the scope of GAM to enable the selection of specific cell types using low cell numbers (approximately 1,000 cells) within a complex tissue and avoids tissue dissociation2,10. We report cell-type specialized 3D chromatin structures at multiple genomic scales that relate to patterns of gene expression. We discover extensive 'melting' of long genes when they are highly expressed and/or have high chromatin accessibility. The contacts most specific of neuron subtypes contain genes associated with specialized processes, such as addiction and synaptic plasticity, which harbour putative binding sites for neuronal transcription factors within accessible chromatin regions. Moreover, sensory receptor genes are preferentially found in heterochromatic compartments in brain cells, which establish strong contacts across tens of megabases. Our results demonstrate that highly specific chromatin conformations in brain cells are tightly related to gene regulation mechanisms and specialized functions.


Subject(s)
Brain/cytology , Cells/classification , Chromatin Assembly and Disassembly , Chromatin/chemistry , Chromatin/genetics , Genes , Molecular Conformation , Animals , Binding Sites , Cells/metabolism , Chromatin/metabolism , Gene Expression Regulation , Male , Mice , Multigene Family/genetics , Neurons/classification , Neurons/metabolism , Nucleic Acid Denaturation , Transcription Factors/metabolism
6.
Nature ; 550(7676): 393-397, 2017 10 19.
Article in English | MEDLINE | ID: mdl-29019987

ABSTRACT

Mouse embryonic stem cells derived from the epiblast contribute to the somatic lineages and the germline but are excluded from the extra-embryonic tissues that are derived from the trophectoderm and the primitive endoderm upon reintroduction to the blastocyst. Here we report that cultures of expanded potential stem cells can be established from individual eight-cell blastomeres, and by direct conversion of mouse embryonic stem cells and induced pluripotent stem cells. Remarkably, a single expanded potential stem cell can contribute both to the embryo proper and to the trophectoderm lineages in a chimaera assay. Bona fide trophoblast stem cell lines and extra-embryonic endoderm stem cells can be directly derived from expanded potential stem cells in vitro. Molecular analyses of the epigenome and single-cell transcriptome reveal enrichment for blastomere-specific signature and a dynamic DNA methylome in expanded potential stem cells. The generation of mouse expanded potential stem cells highlights the feasibility of establishing expanded potential stem cells for other mammalian species.


Subject(s)
Blastomeres/cytology , Mouse Embryonic Stem Cells/cytology , Animals , Blastocyst/cytology , Blastomeres/metabolism , Cell Lineage , Cells, Cultured , Chimera , Embryo, Mammalian/cytology , Endoderm/cytology , Epigenesis, Genetic , Epigenomics , Female , Male , Mice , Mouse Embryonic Stem Cells/metabolism , Placenta/cytology , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Pregnancy , Single-Cell Analysis , Transcriptome , Trophoblasts/cytology
7.
Mol Cell ; 58(4): 610-20, 2015 May 21.
Article in English | MEDLINE | ID: mdl-26000846

ABSTRACT

The differences between individual cells can have profound functional consequences, in both unicellular and multicellular organisms. Recently developed single-cell mRNA-sequencing methods enable unbiased, high-throughput, and high-resolution transcriptomic analysis of individual cells. This provides an additional dimension to transcriptomic information relative to traditional methods that profile bulk populations of cells. Already, single-cell RNA-sequencing methods have revealed new biology in terms of the composition of tissues, the dynamics of transcription, and the regulatory relationships between genes. Rapid technological developments at the level of cell capture, phenotyping, molecular biology, and bioinformatics promise an exciting future with numerous biological and medical applications.


Subject(s)
Gene Expression Profiling/methods , Gene Regulatory Networks , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Alternative Splicing , Animals , Cell Lineage/genetics , Genetic Variation , Humans , Models, Genetic
8.
Nat Methods ; 10(11): 1093-5, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24056876

ABSTRACT

Single-cell RNA-seq can yield valuable insights about the variability within a population of seemingly homogeneous cells. We developed a quantitative statistical method to distinguish true biological variability from the high levels of technical noise in single-cell experiments. Our approach quantifies the statistical significance of observed cell-to-cell variability in expression strength on a gene-by-gene basis. We validate our approach using two independent data sets from Arabidopsis thaliana and Mus musculus.


Subject(s)
Sequence Analysis, RNA/methods , Single-Cell Analysis
9.
iScience ; 26(8): 107435, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37575178

ABSTRACT

Bats host a range of disease-causing viruses without displaying clinical symptoms. The mechanisms behind this are a continuous source of interest. Here, we studied the antiviral response in the Egyptian fruit bat and Kuhl's pipistrelle, representing two subordinal clades. We profiled the antiviral response in fibroblasts using RNA sequencing and compared bat with primate and rodent responses. Both bats upregulate similar genes; however, a subset of these genes is transcriptionally divergent between them. These divergent genes also evolve rapidly in sequence, have specific promoter architectures, and are associated with programs underlying tolerance and resistance. Finally, we characterized antiviral genes that expanded in bats, with duplicates diverging in sequence and expression. Our study reveals a largely conserved antiviral program across bats and points to a set of genes that rapidly evolve through multiple mechanisms. These can contribute to bat adaptation to viral infection and provide directions to understanding the mechanisms behind it.

10.
Nat Cancer ; 4(5): 629-647, 2023 05.
Article in English | MEDLINE | ID: mdl-37217651

ABSTRACT

Immunotherapy revolutionized treatment options in cancer, yet the mechanisms underlying resistance in many patients remain poorly understood. Cellular proteasomes have been implicated in modulating antitumor immunity by regulating antigen processing, antigen presentation, inflammatory signaling and immune cell activation. However, whether and how proteasome complex heterogeneity may affect tumor progression and the response to immunotherapy has not been systematically examined. Here, we show that proteasome complex composition varies substantially across cancers and impacts tumor-immune interactions and the tumor microenvironment. Through profiling of the degradation landscape of patient-derived non-small-cell lung carcinoma samples, we find that the proteasome regulator PSME4 is upregulated in tumors, alters proteasome activity, attenuates presented antigenic diversity and associates with lack of response to immunotherapy. Collectively, our approach affords a paradigm by which proteasome composition heterogeneity and function should be examined across cancer types and targeted in the context of precision oncology.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Antigen Presentation , Lung Neoplasms/pathology , Precision Medicine , Proteasome Endopeptidase Complex/metabolism , Tumor Microenvironment
11.
Cell Stem Cell ; 29(6): 973-989.e10, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35659879

ABSTRACT

The liver carries a remarkable ability to regenerate rapidly after acute zonal damage. Single-cell approaches are necessary to study this process, given the spatial heterogeneity of liver cell types. Here, we use spatially resolved single-cell RNA sequencing (scRNA-seq) to study the dynamics of mouse liver regeneration after acute acetaminophen (APAP) intoxication. We find that hepatocytes proliferate throughout the liver lobule, creating the mitotic pressure required to repopulate the necrotic pericentral zone rapidly. A subset of hepatocytes located at the regenerating front transiently upregulate fetal-specific genes, including Afp and Cdh17, as they reprogram to a pericentral state. Zonated endothelial, hepatic stellate cell (HSC), and macrophage populations are differentially involved in immune recruitment, proliferation, and matrix remodeling. We observe massive transient infiltration of myeloid cells, yet stability of lymphoid cell abundance, in accordance with a global decline in antigen presentation. Our study provides a resource for understanding the coordinated programs of zonal liver regeneration.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver Regeneration , Acetaminophen/metabolism , Acetaminophen/toxicity , Animals , Chemical and Drug Induced Liver Injury/metabolism , Hepatic Stellate Cells , Hepatocytes/metabolism , Liver/metabolism , Mice
12.
Curr Opin Microbiol ; 63: 158-171, 2021 10.
Article in English | MEDLINE | ID: mdl-34365152

ABSTRACT

The gut microbiota, a complex ecosystem of microorganisms of different kingdoms, impacts host physiology and disease. Within this ecosystem, inter-bacterial interactions and their impacts on microbiota community structure and the eukaryotic host remain insufficiently explored. Microbiota-related inter-bacterial interactions range from symbiotic interactions, involving exchange of nutrients, enzymes, and genetic material; competition for nutrients and space, mediated by biophysical alterations and secretion of toxins and anti-microbials; to predation of overpopulating bacteria. Collectively, these understudied interactions hold important clues as to forces shaping microbiota diversity, niche formation, and responses to signals perceived from the host, incoming pathogens and the environment. In this review, we highlight the roles and mechanisms of selected inter-bacterial interactions in the microbiota, and their potential impacts on the host and pathogenic infection. We discuss challenges in mechanistically decoding these complex interactions, and prospects of harnessing them as future targets for rational microbiota modification in a variety of diseases.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Bacteria/genetics , Nutrients , Symbiosis
13.
Nat Med ; 26(12): 1899-1911, 2020 12.
Article in English | MEDLINE | ID: mdl-33106666

ABSTRACT

Acute liver failure (ALF) is a fulminant complication of multiple etiologies, characterized by rapid hepatic destruction, multi-organ failure and mortality. ALF treatment is mainly limited to supportive care and liver transplantation. Here we utilize the acetaminophen (APAP) and thioacetamide (TAA) ALF models in characterizing 56,527 single-cell transcriptomes to define the mouse ALF cellular atlas. We demonstrate that unique, previously uncharacterized stellate cell, endothelial cell, Kupffer cell, monocyte and neutrophil subsets, and their intricate intercellular crosstalk, drive ALF. We unravel a common MYC-dependent transcriptional program orchestrating stellate, endothelial and Kupffer cell activation during ALF, which is regulated by the gut microbiome through Toll-like receptor (TLR) signaling. Pharmacological inhibition of MYC, upstream TLR signaling checkpoints or microbiome depletion suppress this cell-specific, MYC-dependent program, thereby attenuating ALF. In humans, we demonstrate upregulated hepatic MYC expression in ALF transplant recipients compared to healthy donors. Collectively we demonstrate that detailed cellular/genetic decoding may enable pathway-specific ALF therapeutic intervention.


Subject(s)
Liver Failure, Acute/genetics , Microbiota/genetics , Proto-Oncogene Proteins c-myc/genetics , Transcriptome/drug effects , Acetaminophen/toxicity , Animals , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Humans , Kupffer Cells/drug effects , Kupffer Cells/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver Failure, Acute/chemically induced , Liver Failure, Acute/pathology , Liver Transplantation/adverse effects , Mice , Microbiota/drug effects , Neutrophils/drug effects , Neutrophils/metabolism , Single-Cell Analysis , Thioacetamide/toxicity , Toll-Like Receptors/genetics
14.
Nat Rev Microbiol ; 17(12): 742-753, 2019 12.
Article in English | MEDLINE | ID: mdl-31541197

ABSTRACT

Conceptual scientific and medical advances have led to a recent realization that there may be no single, one-size-fits-all diet and that differential human responses to dietary inputs may rather be driven by unique and quantifiable host and microbiome features. Integration of these person-specific host and microbiome readouts into actionable modules may complement traditional food measurement approaches in devising diets that are of benefit to the individual. Although many host-derived factors are hardwired and difficult to modulate, the microbiome may be more readily reshaped by environmental factors such as dietary exposures and is increasingly recognized to potentially impact human physiology by participating in digestion, the absorption of nutrients, shaping of the mucosal immune response and the synthesis or modulation of a plethora of potentially bioactive compounds. Thus, diet-induced microbiota alterations may be harnessed in order to induce changes in host physiology, including disease development and progression. However, major limitations in 'big-data' processing and analysis still limit our interpretive and translational capabilities concerning these person-specific host, microbiome and diet interactions. In this Review, we describe the latest advances in understanding diet-microbiota interactions, the individuality of gut microbiota composition and how this knowledge could be harnessed for personalized nutrition strategies to improve human health.


Subject(s)
Diet/methods , Gastrointestinal Microbiome , Microbiota , Precision Medicine/methods , Host Microbial Interactions , Humans , Individuality
15.
EMBO Mol Med ; 11(2)2019 02.
Article in English | MEDLINE | ID: mdl-30591521

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of cardiometabolic syndrome, which often also includes obesity, diabetes, and dyslipidemia. It is rapidly becoming the most prevalent liver disease worldwide. A sizable minority of NAFLD patients develop nonalcoholic steatohepatitis (NASH), which is characterized by inflammatory changes that can lead to progressive liver damage, cirrhosis, and hepatocellular carcinoma. Recent studies have shown that in addition to genetic predisposition and diet, the gut microbiota affects hepatic carbohydrate and lipid metabolism as well as influences the balance between pro-inflammatory and anti-inflammatory effectors in the liver, thereby impacting NAFLD and its progression to NASH In this review, we will explore the impact of gut microbiota and microbiota-derived compounds on the development and progression of NAFLD and NASH, and the unexplored factors related to potential microbiome contributions to this common liver disease.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Non-alcoholic Fatty Liver Disease/pathology , Bacteria/metabolism , Carbohydrate Metabolism , Carcinoma, Hepatocellular , Disease Progression , Humans , Lipid Metabolism , Liver Cirrhosis/complications , Non-alcoholic Fatty Liver Disease/complications
16.
Brief Funct Genomics ; 17(4): 209-219, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29028866

ABSTRACT

Analysing transcriptomes of cell populations is a standard molecular biology approach to understand how cells function. Recent methodological development has allowed performing similar experiments on single cells. This has opened up the possibility to examine samples with limited cell number, such as cells of the early embryo, and to obtain an understanding of heterogeneity within populations such as blood cell types or neurons. There are two major approaches for single-cell transcriptome analysis: quantitative reverse transcription PCR (RT-qPCR) on a limited number of genes of interest, or more global approaches targeting entire transcriptomes using RNA sequencing. RT-qPCR is sensitive, fast and arguably more straightforward, while whole-transcriptome approaches offer an unbiased perspective on a cell's expression status.


Subject(s)
Gene Expression Profiling/methods , Single-Cell Analysis/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Sequence Analysis, RNA/methods
17.
J Exp Med ; 215(2): 383-396, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29339445

ABSTRACT

Bile acids (BAs) are cholesterol-derived metabolites that facilitate the intestinal absorption and transport of dietary lipids. Recently, BAs also emerged as pivotal signaling molecules controlling glucose, lipid, and energy metabolism by binding to the nuclear hormone farnesoid X receptor (FXR) and Takeda G protein receptor 5 (TGR5) in multiple organs, leading to regulation of intestinal incretin secretion, hepatic gluconeogenesis, glycogen synthesis, energy expenditure, inflammation, and gut microbiome configuration. Alterations in BA metabolism and signaling are associated with obesity and type 2 diabetes mellitus (T2DM), whereas treatment of T2DM patients with BA sequestrants, or bariatric surgery in morbidly obese patients, results in a significant improvement in glycemic response that is associated with changes in the BA profile and signaling. Herein, we review the roles of BAs in glucose metabolism in health and disease; highlight the limitations, unknowns, and challenges in understanding the impact of BAs on the glycemic response; and discuss how this knowledge may be harnessed to develop innovative therapeutic approaches for the treatment of hyperglycemia and diabetes.


Subject(s)
Bile Acids and Salts/metabolism , Glucose/metabolism , Animals , Diabetes Mellitus/etiology , Diabetes Mellitus/metabolism , Gastrointestinal Microbiome , Humans , Inflammation Mediators/metabolism , Lipid Metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
18.
Curr Opin Genet Dev ; 46: 66-76, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28675884

ABSTRACT

Single-cell transcriptomics serves as a powerful tool to identify cell states within populations of cells, and to dissect underlying heterogeneity at high resolution. Single-cell transcriptomics on pluripotent stem cells has provided new insights into cellular variation, subpopulation structures and the interplay of cell cycle with pluripotency. The single-cell perspective has helped to better understand gene regulation and regulatory networks during exit from pluripotency, cell-fate determination as well as molecular mechanisms driving cellular reprogramming of somatic cells to induced pluripotent stage. Here we review the recent progress and significant findings from application of single-cell technologies on pluripotent stem cells along with a brief outlook on new combinatorial single-cell approaches that further unravel pluripotent stem cell states.


Subject(s)
Cell Differentiation/genetics , Cellular Reprogramming/genetics , Pluripotent Stem Cells/metabolism , Single-Cell Analysis/methods , Animals , Gene Expression Regulation, Developmental , Humans
19.
Nat Rev Immunol ; 17(4): 219-232, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28260787

ABSTRACT

Throughout the past century, we have seen the emergence of a large number of multifactorial diseases, including inflammatory, autoimmune, metabolic, neoplastic and neurodegenerative diseases, many of which have been recently associated with intestinal dysbiosis - that is, compositional and functional alterations of the gut microbiome. In linking the pathogenesis of common diseases to dysbiosis, the microbiome field is challenged to decipher the mechanisms involved in the de novo generation and the persistence of dysbiotic microbiome configurations, and to differentiate causal host-microbiome associations from secondary microbial changes that accompany disease course. In this Review, we categorize dysbiosis in conceptual terms and provide an overview of immunological associations; the causes and consequences of bacterial dysbiosis, and their involvement in the molecular aetiology of common diseases; and implications for the rational design of new therapeutic approaches. A molecular- level understanding of the origins of dysbiosis, its endogenous and environmental regulatory processes, and its downstream effects may enable us to develop microbiome-targeting therapies for a multitude of common immune-mediated diseases.


Subject(s)
Dysbiosis/immunology , Gastrointestinal Microbiome/immunology , Immune System Diseases , Dysbiosis/microbiology , Immune System Diseases/immunology , Immune System Diseases/microbiology , Immune System Diseases/physiopathology
20.
Nat Commun ; 8(1): 36, 2017 06 26.
Article in English | MEDLINE | ID: mdl-28652613

ABSTRACT

Polycomb repressive complexes (PRCs) are important histone modifiers, which silence gene expression; yet, there exists a subset of PRC-bound genes actively transcribed by RNA polymerase II (RNAPII). It is likely that the role of Polycomb repressive complex is to dampen expression of these PRC-active genes. However, it is unclear how this flipping between chromatin states alters the kinetics of transcription. Here, we integrate histone modifications and RNAPII states derived from bulk ChIP-seq data with single-cell RNA-sequencing data. We find that Polycomb repressive complex-active genes have greater cell-to-cell variation in expression than active genes, and these results are validated by knockout experiments. We also show that PRC-active genes are clustered on chromosomes in both two and three dimensions, and interactions with active enhancers promote a stabilization of gene expression noise. These findings provide new insights into how chromatin regulation modulates stochastic gene expression and transcriptional bursting, with implications for regulation of pluripotency and development.Polycomb repressive complexes modify histones but it is unclear how changes in chromatin states alter kinetics of transcription. Here, the authors use single-cell RNAseq and ChIPseq to find that actively transcribed genes with Polycomb marks have greater cell-to-cell variation in expression.


Subject(s)
Gene Expression Regulation/physiology , Polycomb-Group Proteins/metabolism , Transcription, Genetic , Animals , Base Sequence , Cell Line, Tumor , Genetic Markers , Mice , Mice, Knockout , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Polycomb-Group Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL