Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Cell ; 146(6): 889-903, 2011 Sep 16.
Article in English | MEDLINE | ID: mdl-21925314

ABSTRACT

Complex genomic rearrangements (CGRs) consisting of two or more breakpoint junctions have been observed in genomic disorders. Recently, a chromosome catastrophe phenomenon termed chromothripsis, in which numerous genomic rearrangements are apparently acquired in one single catastrophic event, was described in multiple cancers. Here, we show that constitutionally acquired CGRs share similarities with cancer chromothripsis. In the 17 CGR cases investigated, we observed localization and multiple copy number changes including deletions, duplications, and/or triplications, as well as extensive translocations and inversions. Genomic rearrangements involved varied in size and complexities; in one case, array comparative genomic hybridization revealed 18 copy number changes. Breakpoint sequencing identified characteristic features, including small templated insertions at breakpoints and microhomology at breakpoint junctions, which have been attributed to replicative processes. The resemblance between CGR and chromothripsis suggests similar mechanistic underpinnings. Such chromosome catastrophic events appear to reflect basic DNA metabolism operative throughout an organism's life cycle.


Subject(s)
Chromosome Aberrations , DNA Repair , Developmental Disabilities/genetics , Neoplasms/genetics , Base Sequence , Child , Child, Preschool , Chromosome Breakage , Comparative Genomic Hybridization , DNA Replication , Female , Humans , In Situ Hybridization, Fluorescence , Infant , Male , Molecular Sequence Data
2.
Genome Res ; 23(1): 23-33, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23034409

ABSTRACT

An unanticipated and tremendous amount of the noncoding sequence of the human genome is transcribed. Long noncoding RNAs (lncRNAs) constitute a significant fraction of non-protein-coding transcripts; however, their functions remain enigmatic. We demonstrate that deletions of a small noncoding differentially methylated region at 16q24.1, including lncRNA genes, cause a lethal lung developmental disorder, alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV), with parent-of-origin effects. We identify overlapping deletions 250 kb upstream of FOXF1 in nine patients with ACD/MPV that arose de novo specifically on the maternally inherited chromosome and delete lung-specific lncRNA genes. These deletions define a distant cis-regulatory region that harbors, besides lncRNA genes, also a differentially methylated CpG island, binds GLI2 depending on the methylation status of this CpG island, and physically interacts with and up-regulates the FOXF1 promoter. We suggest that lung-transcribed 16q24.1 lncRNAs may contribute to long-range regulation of FOXF1 by GLI2 and other transcription factors. Perturbation of lncRNA-mediated chromatin interactions may, in general, be responsible for position effect phenomena and potentially cause many disorders of human development.


Subject(s)
DNA Copy Number Variations , DNA Methylation , Persistent Fetal Circulation Syndrome/genetics , RNA, Long Noncoding/genetics , Chromatin/metabolism , Chromosomes, Human, Pair 16/genetics , CpG Islands , Enhancer Elements, Genetic , Fatal Outcome , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Genomic Imprinting , HEK293 Cells , Humans , Infant, Newborn , Kruppel-Like Transcription Factors/metabolism , Nuclear Proteins/metabolism , Persistent Fetal Circulation Syndrome/diagnosis , Promoter Regions, Genetic , RNA, Long Noncoding/metabolism , Sequence Deletion , Transcription, Genetic , Zinc Finger Protein Gli2
3.
Hum Mutat ; 34(6): 801-11, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23505205

ABSTRACT

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a rare and lethal developmental disorder of the lung defined by a constellation of characteristic histopathological features. Nonpulmonary anomalies involving organs of gastrointestinal, cardiovascular, and genitourinary systems have been identified in approximately 80% of patients with ACD/MPV. We have collected DNA and pathological samples from more than 90 infants with ACD/MPV and their family members. Since the publication of our initial report of four point mutations and 10 deletions, we have identified an additional 38 novel nonsynonymous mutations of FOXF1 (nine nonsense, seven frameshift, one inframe deletion, 20 missense, and one no stop). This report represents an up to date list of all known FOXF1 mutations to the best of our knowledge. Majority of the cases are sporadic. We report four familial cases of which three show maternal inheritance, consistent with paternal imprinting of the gene. Twenty five mutations (60%) are located within the putative DNA-binding domain, indicating its plausible role in FOXF1 function. Five mutations map to the second exon. We identified two additional genic and eight genomic deletions upstream to FOXF1. These results corroborate and extend our previous observations and further establish involvement of FOXF1 in ACD/MPV and lung organogenesis.


Subject(s)
Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Mutation , Persistent Fetal Circulation Syndrome/genetics , Persistent Fetal Circulation Syndrome/metabolism , Protein Interaction Domains and Motifs/genetics , Amino Acid Sequence , Chromosome Mapping , Databases, Genetic , Female , Forkhead Transcription Factors/chemistry , Gene Dosage , Gene Order , Humans , Infant , Infant, Newborn , Male , Molecular Sequence Data , Open Reading Frames , Persistent Fetal Circulation Syndrome/mortality , Persistent Fetal Circulation Syndrome/pathology , Sequence Alignment
4.
Am J Hum Genet ; 87(6): 857-65, 2010 Dec 10.
Article in English | MEDLINE | ID: mdl-21109226

ABSTRACT

We report 26 individuals from ten unrelated families who exhibit variable expression and/or incomplete penetrance of epilepsy, learning difficulties, intellectual disabilities, and/or neurobehavioral abnormalities as a result of a heterozygous microdeletion distally adjacent to the Williams-Beuren syndrome region on chromosome 7q11.23. In six families with a common recurrent ∼1.2 Mb deletion that includes the Huntingtin-interacting protein 1 (HIP1) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG) genes and that is flanked by large complex low-copy repeats, we identified sites for nonallelic homologous recombination in two patients. There were no cases of this ∼1.2 Mb distal 7q11.23 deletion copy number variant identified in over 20,000 control samples surveyed. Three individuals with smaller, nonrecurrent deletions (∼180-500 kb) that include HIP1 but not YWHAG suggest that deletion of HIP1 is sufficient to cause neurological disease. Mice with targeted mutation in the Hip1 gene (Hip1⁻(/)⁻) develop a neurological phenotype characterized by failure to thrive, tremor, and gait ataxia. Overall, our data characterize a neurodevelopmental and epilepsy syndrome that is likely caused by recurrent and nonrecurrent deletions, including HIP1. These data do not exclude the possibility that YWHAG loss of function is also sufficient to cause neurological phenotypes. Based on the current knowledge of Hip1 protein function and its proposed role in AMPA and NMDA ionotropic glutamate receptor trafficking, we believe that HIP1 haploinsufficiency in humans will be amenable to rational drug design for improved seizure control and cognitive and behavioral function.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 7 , DNA-Binding Proteins/genetics , Epilepsy/genetics , Intellectual Disability/genetics , Mental Disorders/genetics , Adolescent , Adult , Animals , Child , Child, Preschool , DNA Copy Number Variations , Female , Humans , Infant , Male , Mice , Middle Aged , Molecular Sequence Data
5.
Proc Natl Acad Sci U S A ; 106(4): 1211-5, 2009 Jan 27.
Article in English | MEDLINE | ID: mdl-19139419

ABSTRACT

Nitric Oxide (NO), produced by inducible nitric oxide synthase (iNOS), has been implicated in the pathogenesis of various biological and inflammatory disorders. Recent evidence suggests that aggresome formation is a physiologic stress response not limited to misfolded proteins. That stress response, termed "physiologic aggresome," is exemplified by aggresome formation of iNOS, an important host defense protein. The functional significance of cellular formation of the iNOS aggresome is hitherto unknown. In this study, we used live cell imaging, fluorescence microscopy, and intracellular fluorescence NO probes to map the subcellular location of iNOS and NO under various conditions. We found that NO production colocalized with cytosolic iNOS but aggresomes containing iNOS were distinctly devoid of NO production. Further, cells expressing iNOS aggresomes produced significantly less NO as compared with cells not expressing aggresomes. Importantly, primary normal human bronchial epithelial cells, stimulated by cytokines to express iNOS, progressively sequestered iNOS to the aggresome, a process that correlated with marked reduction of NO production. These results suggest that bronchial epithelial cells used the physiologic aggresome mechanism for iNOS inactivation. Our studies reveal a novel cellular strategy to terminate NO production via formation of the iNOS aggresome.


Subject(s)
Inclusion Bodies/enzymology , Nitric Oxide Synthase Type II/metabolism , Stress, Physiological , Bronchi/cytology , Bronchi/enzymology , Cell Survival/drug effects , Cells, Cultured , Cytokines/pharmacology , Enzyme Activation/drug effects , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/enzymology , Humans , Inclusion Bodies/drug effects , Nitric Oxide/biosynthesis , Protein Transport/drug effects , Rhodamines/metabolism , Stress, Physiological/drug effects , Subcellular Fractions/drug effects , Subcellular Fractions/enzymology
6.
Genet Med ; 13(5): 447-52, 2011 May.
Article in English | MEDLINE | ID: mdl-21293276

ABSTRACT

PURPOSE: Mutations in the CDKL5 gene have been associated with an X-linked dominant early infantile epileptic encephalopathy-2. The clinical presentation is usually of severe encephalopathy with refractory seizures and Rett syndrome (RTT)-like phenotype. We attempted to assess the role of mosaic intragenic copy number variation in CDKL5. METHODS: We have used comparative genomic hybridization with a custom-designed clinical oligonucleotide array targeting exons of selected disease and candidate genes, including CDKL5. RESULTS: We have identified mosaic exonic deletions of CDKL5 in one male and two females with developmental delay and medically intractable seizures. These three mosaic changes represent 60% of all deletions detected in 12,000 patients analyzed by array comparative genomic hybridization and involving the exonic portion of CDKL5. CONCLUSION: We report the first case of an exonic deletion of CDKL5 in a male and emphasize the importance of underappreciated mosaic exonic copy number variation in patients with early-onset seizures and RTT-like features of both genders.


Subject(s)
Exons/genetics , Mosaicism , Protein Serine-Threonine Kinases/genetics , Seizures/genetics , Sequence Deletion/genetics , Age of Onset , Child , Child, Preschool , Chromosomes, Human, X/genetics , Female , Gene Order , Humans , Infant , Male
7.
Am J Med Genet A ; 155A(6): 1442-7, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21567932

ABSTRACT

To date, over 70 mutations in the TGFBR2 gene have been reported in patients with Loeys-Dietz syndrome (LDS), Marfan syndrome type 2 (MFS2), or other hereditary thoracic aortic aneurysms and dissections. Whereas almost all of mutations analyzed thus far are predicted to disrupt the constitutively active C-terminal serine/threonine kinase domain of TGFBR2, mounting evidence suggests that the molecular mechanism underlying these diseases is more complex than simple haploinsufficiency. Using exon-targeted oligonucleotide array comparative genomic hybridization, we identified an ∼896 kb deletion of TGFBR2 in a 20-month-old female with microcephaly and global developmental delay, but no stigmata of LDS. FISH analysis showed no evidence of this deletion in the parental peripheral blood samples; however, somatic mosaicism was detected using PCR in the paternal DNA from peripheral blood lymphocytes and lymphoblasts. Our data suggest that TGFBR2 haploinsufficiency may cause a phenotype, which is distinct from LDS. Moreover, we propose that somatic mosaicism below the detection threshold of FISH analysis in asymptomatic parents of children with genomic disorders may be more common than previously recognized.


Subject(s)
Developmental Disabilities/genetics , Gene Deletion , Microcephaly/genetics , Phenotype , Protein Serine-Threonine Kinases/genetics , Receptors, Transforming Growth Factor beta/genetics , Comparative Genomic Hybridization , Developmental Disabilities/pathology , Female , Haploinsufficiency , Humans , In Situ Hybridization, Fluorescence , Infant , Microcephaly/pathology , Mosaicism , Receptor, Transforming Growth Factor-beta Type II
8.
Eur J Hum Genet ; 22(9): 1071-6, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24424125

ABSTRACT

Although deletions of CHRNA7 have been associated with intellectual disability (ID), seizures and neuropsychiatric phenotypes, the pathogenicity of CHRNA7 duplications has been uncertain. We present the first report of CHRNA7 triplication. Three generations of a family affected with various neuropsychiatric phenotypes, including anxiety, bipolar disorder, developmental delay and ID, were studied with array comparative genomic hybridization (aCGH). High-resolution aCGH revealed a 650-kb triplication at chromosome 15q13.3 encompassing the CHRNA7 gene, which encodes the alpha7 subunit of the neuronal nicotinic acetylcholine receptor. A small duplication precedes the triplication at the proximal breakpoint junction, and analysis of the breakpoint indicates that the triplicated segment is in an inverted orientation with respect to the duplication. CHRNA7 triplication appears to occur by a replication-based mechanism that produces inverted triplications embedded within duplications. Co-segregation of the CHRNA7 triplication with neuropsychiatric and cognitive phenotypes provides further evidence for dosage sensitivity of CHRNA7.


Subject(s)
DNA Copy Number Variations , Developmental Disabilities/genetics , Intellectual Disability/genetics , Pedigree , alpha7 Nicotinic Acetylcholine Receptor/genetics , Adult , Child , Chromosome Breakpoints , Chromosomes, Human, Pair 15/genetics , Developmental Disabilities/diagnosis , Female , Humans , Intellectual Disability/diagnosis , Male
9.
Immunity ; 27(1): 135-44, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17658277

ABSTRACT

Autophagy has recently been shown to be an important component of the innate immune response. The signaling pathways leading to activation of autophagy in innate immunity are not known. Here we showed that Toll-like receptor 4 (TLR4) served as a previously unrecognized environmental sensor for autophagy. Autophagy was induced by lipopolysaccharide (LPS) in primary human macrophages and in the murine macrophage RAW264.7 cell line. We defined a new molecular pathway in which LPS-induced autophagy was regulated through a Toll-interleukin-1 receptor domain-containing adaptor-inducing interferon-beta (TRIF)-dependent, myeloid differentiation factor 88 (MyD88)-independent TLR4 signaling pathway. Receptor-interacting protein (RIP1) and p38 mitogen-activated protein kinase were downstream components of this pathway. This signaling pathway did not affect cell viability, indicating that it is distinct from the autophagic death signaling pathway. We further showed that LPS-induced autophagy could enhance mycobacterial colocalization with the autophagosomes. This study links two ancient processes, autophagy and innate immunity, together through a shared signaling pathway.


Subject(s)
Autophagy/immunology , Immunity, Innate , Toll-Like Receptor 4/physiology , Animals , Cell Line , Humans , Lipopolysaccharides/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/microbiology , Mice , Mycobacterium tuberculosis/immunology , Signal Transduction/immunology
10.
Proc Natl Acad Sci U S A ; 102(13): 4854-9, 2005 Mar 29.
Article in English | MEDLINE | ID: mdl-15781872

ABSTRACT

Misfolding and aggregation of proteins play an important part in the pathogenesis of several genetic and degenerative diseases. Recent evidence suggests that cells have evolved a pathway that involves sequestration of aggregated proteins into specialized "holding stations" called aggresomes. Here we show that cells regulate inducible NO synthase (iNOS), an important host defense protein, through aggresome formation. iNOS aggresome formation depends on a functional dynein motor and the integrity of the microtubules. The iNOS aggresome represents a "physiologic aggresome" and thus defines a new paradigm for cellular regulation of protein processing. This study indicates that aggresome formation in response to misfolded proteins may merely represent an acceleration of an established physiologic regulatory process for specific proteins whose regulation by aggresome formation is deemed necessary by the cell.


Subject(s)
Inclusion Bodies/metabolism , Nitric Oxide Synthase/metabolism , Animals , Cells, Cultured , Dyneins/metabolism , Fluorescence Recovery After Photobleaching , Green Fluorescent Proteins , Humans , Image Processing, Computer-Assisted , Inclusion Bodies/drug effects , Indoles , Leupeptins/pharmacology , Mice , Microscopy, Electron , Microtubule-Organizing Center/drug effects , Microtubule-Organizing Center/metabolism , Nitric Oxide Synthase Type II , Nocodazole/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL