Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
AAPS PharmSciTech ; 25(7): 190, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164432

ABSTRACT

In this research, 3D-printed antifungal buccal films (BFs) were manufactured as a potential alternative to commercially available antifungal oral gels addressing key considerations such as ease of manufacturing, convenience of administration, enhanced drug efficacy and suitability of paediatric patients. The fabrication process involved the use of a semi-solid extrusion method to create BFs from zein-Poly-Vinyl-Pyrrolidone (zein-PVP) polymer blend, which served as a carrier for drug (miconazole) and taste enhancers. After manufacturing, it was determined that the disintegration time for all films was less than 10 min. However, these films are designed to adhere to buccal tissue, ensuring sustained drug release. Approximately 80% of the miconazole was released gradually over 2 h from the zein/PVP matrix of the 3D printed films. Moreover, a detailed physicochemical characterization including spectroscopic and thermal methods was conducted to assess solid state and thermal stability of film constituents. Mucoadhesive properties and mechanical evaluation were also studied, while permeability studies revealed the extent to which film-loaded miconazole permeates through buccal tissue compared to commercially available oral gel formulation. Histological evaluation of the treated tissues was followed. Furthermore, in vitro antifungal activity was assessed for the developed films and the commercial oral gel. Finally, films underwent a two-month drug stability test to ascertain the suitability of the BFs for clinical application. The results demonstrate that 3D-printed films are a promising alternative for local administration of miconazole in the oral cavity.


Subject(s)
Antifungal Agents , Candidiasis, Oral , Drug Liberation , Miconazole , Printing, Three-Dimensional , Miconazole/administration & dosage , Miconazole/chemistry , Miconazole/pharmacokinetics , Antifungal Agents/administration & dosage , Antifungal Agents/chemistry , Antifungal Agents/pharmacokinetics , Administration, Buccal , Candidiasis, Oral/drug therapy , Humans , Zein/chemistry , Mouth Mucosa/metabolism , Mouth Mucosa/microbiology , Povidone/chemistry , Permeability , Drug Delivery Systems/methods , Animals , Chemistry, Pharmaceutical/methods , Child
2.
Biomimetics (Basel) ; 9(6)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38921239

ABSTRACT

Esophageal cancer is a complex and challenging tumor to treat, with esophageal stenting being used as a palliative measure to improve the quality of life of patients. Self-expandable metal stents (SEMS), self-expandable plastic stents (SEPS), and biodegradable stents are the most commonly used types of stents. However, complications can arise, such as migration, bleeding, and perforation. To address issues of migration, this study developed a novel 3D printed bioinspired esophageal stent utilizing a highly flexible and ductile TPU material. The stent was designed to be self-expanding and tubular with flared ends to provide secure anchorage at both the proximal and distal ends of the structure. Suction cups were strategically placed around the shaft of the stent to prevent migration. The stent was evaluated through compression-recovery, self-expansion, and anti-migration tests to evaluate its recovery properties, self-expansion ability, and anchoring ability, respectively. The results indicated that the novel stent was able to recover its shape, expand, keep the esophagus open, and resist migration, demonstrating its potential for further research and clinical applications. Finite element analysis (FEA) was leveraged to analyze the stent's mechanical behavior, providing insights into its structural integrity, self-expansion capability, and resistance against migration. These results, supported by FEA, highlight the potential of this innovative stent for further research and its eventual application in preclinical settings.

3.
Nanomaterials (Basel) ; 14(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38998708

ABSTRACT

In the current study, the synthesis of hydroxyapatite-ceria (HAP-CeO2) scaffolds is attempted through a bioinspired chemical approach. The utilized colloidal CeO2 suspension presents antifungal activity against the Aspergillus flavus and Aspergillus fumigatus species at concentrations higher than 86.1 ppm. Three different series of the composite HAP-CeO2 suspensions are produced, which are differentiated based on the precursor suspension to which the CeO2 suspension is added and by whether this addition takes place before or after the formation of the hydroxyapatite phase. Each of the series consists of three suspensions, in which the pure ceria weight reaches 4, 5, and 10% (by mass) of the produced hydroxyapatite, respectively. The characterization showed that the 2S series's specimens present the greater alteration towards their viscoelastic properties. Furthermore, the 2S series's sample with 4% CeO2 presents the best mechanical response. This is due to the growth of needle-like HAP crystals during lyophilization, which-when oriented perpendicular to the direction of stress application-enhance the resistance of the sample to deformation. The 2S series's scaffolds had an average pore size equal to 100 µm and minimum open porosity 89.5% while simultaneously presented the lowest dissolution rate in phosphate buffered saline.

4.
Polymers (Basel) ; 15(23)2023 Nov 23.
Article in English | MEDLINE | ID: mdl-38231946

ABSTRACT

Poly(ethylene 2,5-furandicarboxylate) (PEF)-based nanocomposites containing Ce-bioglass, ZnO, and ZrO2 nanoparticles were synthesized via in situ polymerization, targeting food packaging applications. The nanocomposites were thoroughly characterized, combining a range of techniques. The successful polymerization was confirmed using attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy, and the molecular weight values were determined indirectly by applying intrinsic viscosity measurements. The nanocomposites' structure was investigated by depth profiling using time-of-flight secondary ion mass spectrometry (ToF-SIMS), while color measurements showed a low-to-moderate increase in the color concentration of all the nanocomposites compared to neat PEF. The thermal properties and crystallinity behavior of the synthesized materials were also examined. The neat PEF and PEF-based nanocomposites show a crystalline fraction of 0-5%, and annealed samples of both PEF and PEF-based nanocomposites exhibit a crystallinity above 20%. Furthermore, scanning electron microscopy (SEM) micrographs revealed that active agent nanoparticles are well dispersed in the PEF matrix. Contact angle measurements showed that incorporating nanoparticles into the PEF matrix significantly reduces the wetting angle due to increased roughness and introduction of the polar -OH groups. Antimicrobial studies indicated a significant increase in inhibition of bacterial strains of about 9-22% for Gram-positive bacterial strains and 5-16% for Gram-negative bacterial strains in PEF nanocomposite films, respectively. Finally, nanoindentation tests showed that the ZnO-based nanocomposite exhibits improved hardness and elastic modulus values compared to neat PEF.

SELECTION OF CITATIONS
SEARCH DETAIL