ABSTRACT
Industrial production of L-lactic acid, which in polymerized form as poly-lactic acid is widely used as a biodegradable plastic, has been attracting world-wide attention. By genetic engineering we constructed a strain of the Crabtree-negative yeast Candida boidinii that efficiently produced a large amount of L-lactic acid. The alcohol fermentation pathway of C. boidinii was altered by disruption of the PDC1 gene encoding pyruvate decarboxylase, resulting in an ethanol production that was reduced to 17% of the wild-type strain. The alcohol fermentation pathway of the PDC1 deletion strain was then successfully utilized for the synthesis of L-lactic acid by placing the bovine L-lactate dehydrogenase-encoding gene under the control of the PDC1 promoter by targeted integration. Optimizing the conditions for batch culture in a 5 l jar-fermenter resulted in an L-lactic acid production reaching 85.9 g/l within 48 h. This productivity (1.79 g/l/h) is the highest thus far reported for L-lactic acid-producing yeasts.
Subject(s)
Candida/genetics , Candida/metabolism , Genetic Engineering , Lactic Acid/metabolism , Amino Acid Sequence , Animals , Candida/chemistry , Cattle , Cloning, Molecular , Ethanol/metabolism , Fermentation , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Molecular Sequence Data , Pyruvate Decarboxylase/chemistry , Pyruvate Decarboxylase/genetics , Pyruvate Decarboxylase/metabolism , Sequence AlignmentABSTRACT
When antibodies were expressed in the methylotrophic yeast Ogataea minuta, we found that abnormal O mannosylation occurred in the secreted antibody. Yeast-specific O mannosylation is initiated by the addition of mannose at serine (Ser) or threonine (Thr) residues in the endoplasmic reticulum via protein O mannosyltransferase (Pmt) activity. To suppress the addition of O-linked sugar chains on antibodies, we examined the possibility of inhibiting Pmt activity by the addition of a Pmt inhibitor during cultivation. The Pmt inhibitor was found to partially suppress the O mannosylation on the antibodies. Surprisingly, the suppression of O mannosylation was associated with an increased amount of assembled antibody (H2L2) and enhanced the antigen-binding activity of the secreted antibody. In this study, we demonstrated the expression of human antibody in O. minuta and elucidated the relationship between O mannosylation and antibody production in yeast.
Subject(s)
Antibodies/metabolism , Mannose/metabolism , Mannosyltransferases/metabolism , Yeasts/metabolism , Antibodies/genetics , Blotting, Western , Endoplasmic Reticulum/metabolism , Enzyme Inhibitors/pharmacology , Flow Cytometry , Glycosylation/drug effects , Humans , Mannosyltransferases/antagonists & inhibitors , Models, Biological , Recombinant Proteins/biosynthesis , Yeasts/drug effects , Yeasts/geneticsABSTRACT
Alicyclobacillus acidoterrestris, an obligate aerobe and one of the most harmful bacteria in acidic beverages, requires oxygen for growth. However, the relationship between oxygen availability and its growth has not yet been quantified. We examined the correlation between A. acidoterrestris growth and oxygen availability to determine whether A. acidoterrestris can be controlled by restricting oxygen. Airtight containers were filled with YSG broth and apple juice at various oxygen concentrations. Positive correlation (R(2)=0.9329) was observed between A. acidoterrestris growth and oxygen availability in YSG broth, and a lower but nonetheless slight correlation (R(2)=0.5604) was observed for apple juice. These results indicate that decreased oxygen availability in a container could restrict growth. As results, the addition of reducing compounds along with airtight conditions may help prevent the deterioration of beverages caused by the proliferation of A. acidoterrestris.
Subject(s)
Alicyclobacillus/drug effects , Beverages/microbiology , Fruit/microbiology , Oxygen/pharmacology , Alicyclobacillus/physiology , Anaerobiosis , Bacterial Load , Food Microbiology , Malus , Oxidation-Reduction , Spores, Bacterial/drug effects , Spores, Bacterial/growth & development , TemperatureABSTRACT
Glycosyltrehalose trehalohydrolase (GTHase) is an α-amylase that cleaves the α-1,4 bond adjacent to the α-1,1 bond of maltooligosyltrehalose to release trehalose. To investigate the catalytic and substrate recognition mechanisms of GTHase, two residues, Asp252 (nucleophile) and Glu283 (general acid/base), located at the catalytic site of GTHase were mutated (Asp252âSer (D252S), Glu (D252E) and Glu283âGln (E283Q)), and the activity and structure of the enzyme were investigated. The E283Q, D252E, and D252S mutants showed only 0.04, 0.03, and 0.6% of enzymatic activity against the wild-type, respectively. The crystal structure of the E283Q mutant GTHase in complex with the substrate, maltotriosyltrehalose (G3-Tre), was determined to 2.6-Å resolution. The structure with G3-Tre indicated that GTHase has at least five substrate binding subsites and that Glu283 is the catalytic acid, and Asp252 is the nucleophile that attacks the C1 carbon in the glycosidic linkage of G3-Tre. The complex structure also revealed a scheme for substrate recognition by GTHase. Substrate recognition involves two unique interactions: stacking of Tyr325 with the terminal glucose ring of the trehalose moiety and perpendicularly placement of Trp215 to the pyranose rings at the subsites -1 and +1 glucose.
Subject(s)
Amino Acids/chemistry , Bacterial Proteins/chemistry , Sulfolobus solfataricus/enzymology , alpha-Amylases/chemistry , Amino Acid Substitution , Catalytic Domain , Crystallography, X-Ray , Enzyme Activation , Enzyme Assays , Hydrogen Bonding , Models, Molecular , Multiprotein Complexes/chemistry , Protein Binding , Protein Interaction Mapping , Structure-Activity Relationship , Substrate Specificity , Sulfolobus solfataricus/chemistry , Sulfolobus solfataricus/geneticsABSTRACT
When human antibody genes were expressed in the methylotrophic yeast Ogataea minuta, the secreted antibody became partially degraded. To suppress the degradation, a vacuolar protease-deficient strain was constructed and its antibody production was evaluated. Although antibody productivity was improved in the vacuolar protease-deficient strain, the secreted antibody still became partially degraded. Peptide sequencing revealed that the cleavage occurred in the CH1 region of the heavy chain, implying that the cleavage was caused by an aspartic protease, Yps1p. To inhibit this cleavage, Yps1p-deficient strains were constructed and their antibody production was evaluated. As a result, the partial degradation of the antibody was suppressed in the O. minuta multiple-protease-deficient strains.
Subject(s)
Antibodies/metabolism , Gene Deletion , Industrial Microbiology/methods , Peptide Hydrolases/genetics , Recombinant Proteins/biosynthesis , Saccharomycetales/metabolism , Antibodies/genetics , Fungal Proteins/genetics , Humans , Models, Biological , Recombinant Proteins/genetics , Saccharomycetales/enzymology , Saccharomycetales/genetics , Vacuoles/enzymologyABSTRACT
The methylotrophic yeast Ogataea minuta IFO 10746 was selected as a suitable strain for producing human-compatible glycoproteins by means of analyses of its cell-wall mannoproteins. First, the OmURA3 gene encoding an orotidine-5'-phosphate decarboxylase was cloned and disrupted to generate a host strain with a uracil auxotrophic marker. Second, both the promoters and the terminators from the OmAOX1 gene encoding an alcohol oxidase for an inducible promoter, or those from the OmTDH1 gene encoding a glyceraldehyde-3-phosphate dehydrogenase for a constitutive promoter, were isolated to construct an expression vector system for heterologous genes. Next, the OmOCH1 gene encoding a starting enzyme with alpha-1,6-mannosyltransferase activity to form a backbone of the N-linked outer sugar chain peculiar to yeast was disrupted, and an alpha-1,2-mannosidase gene from Aspergillus saitoi with an endoplasmic reticulum retention signal (HDEL) under the control of the OmAOX1 promoter was introduced to convert the sugar chain to Man5GlcNAc2 in O. minuta. As a result, we succeeded in breeding a new methylotrophic yeast, O. minuta, producing a Man5GlcNAc2-high-mannose-type sugar chain as a prototype of a human-compatible sugar chain. We also elucidate here the usefulness of the strategy for producing human-compatible sugar chains in yeast.
Subject(s)
Oligosaccharides/biosynthesis , Pichia/metabolism , Base Sequence , Mannosidases/genetics , Membrane Glycoproteins/analysis , Molecular Sequence Data , Pichia/genetics , Promoter Regions, Genetic , Transformation, BacterialABSTRACT
The yeast Candida boidinii PEP4 and PRB1 genes, encoding proteinase A (PrA) and proteinase B (PrB), respectively, have been cloned and their primary structures were analyzed. The open reading frames of the PEP4 gene (1263 bp encoding a protein of 420 amino acids) and the PRBI gene (1683 bp encoding a protein of 560 amino acids) were found. The deduced amino acid sequences of PrA and PrB are very similar to Saccharomyces cerevisiae PrA and PrB (64% and 61% identities, respectively). Both PEP4 and PRBI genes were disrupted in the C. boidinii genome by one-step gene disruption. The resultant pep4delta and the pep4delta prb1delta strains lost protease activity when compared with the wild-type original strain. The constructed C. boidinii strains are expected to be useful hosts for heterologous protein production.