ABSTRACT
Throughout a 24-h period, the small intestine (SI) is exposed to diurnally varying food- and microbiome-derived antigenic burdens but maintains a strict immune homeostasis, which when perturbed in genetically susceptible individuals, may lead to Crohn disease. Herein, we demonstrate that dietary content and rhythmicity regulate the diurnally shifting SI epithelial cell (SIEC) transcriptional landscape through modulation of the SI microbiome. We exemplify this concept with SIEC major histocompatibility complex (MHC) class II, which is diurnally modulated by distinct mucosal-adherent SI commensals, while supporting downstream diurnal activity of intra-epithelial IL-10+ lymphocytes regulating the SI barrier function. Disruption of this diurnally regulated diet-microbiome-MHC class II-IL-10-epithelial barrier axis by circadian clock disarrangement, alterations in feeding time or content, or epithelial-specific MHC class II depletion leads to an extensive microbial product influx, driving Crohn-like enteritis. Collectively, we highlight nutritional features that modulate SI microbiome, immunity, and barrier function and identify dietary, epithelial, and immune checkpoints along this axis to be potentially exploitable in future Crohn disease interventions.
Subject(s)
Crohn Disease/microbiology , Epithelial Cells/metabolism , Gastrointestinal Microbiome , Histocompatibility Antigens Class II/metabolism , Intestine, Small/immunology , Intestine, Small/microbiology , Transcriptome/genetics , Animals , Anti-Bacterial Agents/pharmacology , Circadian Clocks/physiology , Crohn Disease/immunology , Crohn Disease/metabolism , Diet , Epithelial Cells/cytology , Epithelial Cells/immunology , Flow Cytometry , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Gene Expression Profiling , Histocompatibility Antigens Class II/genetics , Homeostasis , In Situ Hybridization, Fluorescence , Interleukin-10/metabolism , Interleukin-10/pharmacology , Intestine, Small/physiology , Lymphocytes , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Periodicity , T-Lymphocytes/immunology , Transcriptome/physiologyABSTRACT
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
ABSTRACT
A contribution of epigenetic modifications to B cell tolerance has been proposed but not directly tested. Here we report that deficiency of ten-eleven translocation (Tet) DNA demethylase family members Tet2 and Tet3 in B cells led to hyperactivation of B and T cells, autoantibody production and lupus-like disease in mice. Mechanistically, in the absence of Tet2 and Tet3, downregulation of CD86, which normally occurs following chronic exposure of self-reactive B cells to self-antigen, did not take place. The importance of dysregulated CD86 expression in Tet2- and Tet3-deficient B cells was further demonstrated by the restriction, albeit not complete, on aberrant T and B cell activation following anti-CD86 blockade. Tet2- and Tet3-deficient B cells had decreased accumulation of histone deacetylase 1 (HDAC1) and HDAC2 at the Cd86 locus. Thus, our findings suggest that Tet2- and Tet3-mediated chromatin modification participates in repression of CD86 on chronically stimulated self-reactive B cells, which contributes, at least in part, to preventing autoimmunity.
Subject(s)
Autoimmunity/immunology , B-Lymphocytes/immunology , B7-2 Antigen/immunology , DNA-Binding Proteins/immunology , Dioxygenases/immunology , Proto-Oncogene Proteins/immunology , Animals , Autoimmune Diseases/immunology , Epigenesis, Genetic/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, TransgenicABSTRACT
Loss of immune tolerance to gut microflora is inextricably linked to chronic intestinal inflammation and colitis-associated colorectal cancer (CAC). The LRP5/6 signaling cascade in APCs contributes to immune homeostasis in the gut, but whether this pathway in APCs protects against CAC is not known. In the current study, using a mouse model of CAC, we show that the LRP5/6-ß-catenin-IL-10 signaling axis in intestinal CD11c+ APCs protects mice from CAC by regulating the expression of tumor-promoting inflammatory factors in response to commensal flora. Genetic deletion of LRP5/6 in CD11c+ APCs in mice (LRP5/6ΔCD11c) resulted in enhanced susceptibility to CAC. This is due to a microbiota-dependent increased expression of proinflammatory factors and decreased expression of the immunosuppressive cytokine IL-10. This condition could be improved in LRP5/6ΔCD11c mice by depleting the gut flora, indicating the importance of LRP5/6 in mediating immune tolerance to the gut flora. Moreover, mechanistic studies show that LRP5/6 suppresses the expression of tumor-promoting inflammatory factors in CD11c+ APCs via the ß-catenin-IL-10 axis. Accordingly, conditional activation of ß-catenin specifically in CD11c+ APCs or in vivo administration of IL-10 protected LRP5/6ΔCD11c mice from CAC by suppressing the expression of inflammatory factors. In summary, in this study, we identify a key role for the LRP5/6-ß-catenin-IL-10 signaling pathway in intestinal APCs in resolving chronic intestinal inflammation and protecting against CAC in response to the commensal flora.
Subject(s)
Antigen-Presenting Cells/immunology , Colitis/immunology , Colonic Neoplasms/immunology , Gastrointestinal Microbiome/immunology , Interleukin-10/immunology , Wnt Signaling Pathway/immunology , beta Catenin/immunology , Animals , Antigen-Presenting Cells/pathology , Colitis/complications , Colitis/genetics , Colitis/pathology , Colonic Neoplasms/etiology , Colonic Neoplasms/genetics , Colonic Neoplasms/prevention & control , Gastrointestinal Microbiome/genetics , Interleukin-10/genetics , Mice , Mice, Transgenic , Neoplasm Proteins/genetics , Wnt Signaling Pathway/genetics , beta Catenin/geneticsABSTRACT
Dendritic cells (DCs) are a key cell type in the initiation of the adaptive immune response. Recently, an additional role for DCs in suppressing myeloproliferation was discovered. Myeloproliferative disorder (MPD) was observed in murine studies with constitutive depletion of DCs, as well as in patients with congenital deficiency in DCs caused by mutations in GATA2 or IRF8 The mechanistic link between DC deficiency and MPD was not predicted through the known biology and has remained an enigma. Prevailing models suggest numerical DC deficiency leads to MPD through compensatory myeloid differentiation. Here, we formally tested whether MPD can also arise through a loss of DC function without numerical deficiency. Using mice whose DCs are deficient in antigen presentation, we find spontaneous MPD that is characterized by splenomegaly, neutrophilia, and extramedullary hematopoiesis, despite normal numbers of DCs. Disease development was dependent on loss of the MHC class II (MHCII) antigen-presenting complex on DCs and was eliminated in mice deficient in total lymphocytes. Mice lacking MHCII and CD4 T cells did not develop disease. Thus, MPD was paradoxically contingent on the presence of CD4 T cells and on a failure of DCs to activate CD4 T cells, trapping the cells in a naive Flt3 ligand-expressing state. These results identify a novel requirement for intercellular collaboration between DCs and CD4 T cells to regulate myeloid differentiation. Our findings support a new conceptual framework of DC biology in preventing MPD in mice and humans.
Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cell Communication , Dendritic Cells/immunology , Myeloproliferative Disorders/immunology , Animals , CD11c Antigen/metabolism , Lymphocyte Activation/immunology , Mice, Inbred C57BL , Myeloid Cells/pathology , Myeloproliferative Disorders/pathologyABSTRACT
Aberrant Wnt/ß-catenin signaling occurs in several inflammatory diseases, including inflammatory bowel disease and inflammatory bowel disease-associated colon carcinogenesis. However, its role in shaping mucosal immune responses to commensals in the gut remains unknown. In this study, we investigated the importance of canonical Wnt signaling in CD11c+ APCs in controlling intestinal inflammation. Using a mouse model of ulcerative colitis, we demonstrated that canonical Wnt signaling in intestinal CD11c+ APCs controls intestinal inflammation by imparting an anti-inflammatory phenotype. Genetic deletion of Wnt coreceptors, low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) in CD11c+ APCs in LRP5/6ΔCD11c mice, resulted in enhanced intestinal inflammation with increased histopathological severity of colonic tissue. This was due to microbiota-dependent increased production of proinflammatory cytokines and decreased expression of immune-regulatory factors such as IL-10, retinoic acid, and IDO. Mechanistically, loss of LRP5/6-mediated signaling in CD11c+ APCs resulted in altered microflora and T cell homeostasis. Furthermore, our study demonstrates that conditional activation of ß-catenin in CD11c+ APCs in LRP5/6ΔCD11c mice resulted in reduced intestinal inflammation with decreased histopathological severity of colonic tissue. These results reveal a mechanism by which intestinal APCs control intestinal inflammation and immune homeostasis via the canonical Wnt-signaling pathway.
Subject(s)
Antigen-Presenting Cells/immunology , Gastrointestinal Microbiome/immunology , Immunity, Mucosal/immunology , Intestinal Mucosa/immunology , Wnt Signaling Pathway/immunology , Animals , Colitis, Ulcerative/immunology , Colitis, Ulcerative/microbiology , Colon/immunology , Colon/microbiology , Homeostasis/immunology , Inflammation/immunology , Intestinal Mucosa/microbiology , Mice , Mice, Inbred C57BL , Mice, TransgenicABSTRACT
At mucosal sites such as the intestine, the immune system launches robust immunity against invading pathogens while maintaining a state of tolerance to commensal flora and ingested food Ags. The molecular mechanisms underlying this phenomenon remain poorly understood. In this study, we report that signaling by GPR81, a receptor for lactate, in colonic dendritic cells and macrophages plays an important role in suppressing colonic inflammation and restoring colonic homeostasis. Genetic deletion of GPR81 in mice led to increased Th1/Th17 cell differentiation and reduced regulatory T cell differentiation, resulting in enhanced susceptibility to colonic inflammation. This was due to increased production of proinflammatory cytokines (IL-6, IL-1ß, and TNF-α) and decreased expression of immune regulatory factors (IL-10, retinoic acid, and IDO) by intestinal APCs lacking GPR81. Consistent with these findings, pharmacological activation of GPR81 decreased inflammatory cytokine expression and ameliorated colonic inflammation. Taken together, these findings identify a new and important role for the GPR81 signaling pathway in regulating immune tolerance and colonic inflammation. Thus, manipulation of the GPR81 pathway could provide novel opportunities for enhancing regulatory responses and treating colonic inflammation.
Subject(s)
Colitis/metabolism , Homeostasis/physiology , Lactic Acid/metabolism , Receptors, Cell Surface/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Cytokines/metabolism , Disease Models, Animal , Female , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Th1 Cells/metabolismABSTRACT
Foxp3(+) regulatory T (Treg) cells can undergo reprogramming into a phenotype expressing proinflammatory cytokines. However, the biologic significance of this conversion remains unclear. We show that large numbers of Treg cells undergo rapid reprogramming into activated T helper cells after vaccination with antigen plus Toll-like receptor 9 (TLR-9) ligand. Helper activity from converted Treg cells proved essential during initial priming of CD8(+) T cells to a new cross-presented antigen. Help from Treg cells was dependent on CD40L, and (unlike help from conventional non-Treg CD4(+) cells) did not require preactivation or prior exposure to antigen. In hosts with established tumors, Treg cell reprogramming was suppressed by tumor-induced indoleamine 2,3-dioxygenase (IDO) and vaccination failed because of lack of help. Treg cell reprogramming, vaccine efficacy, and antitumor CD8(+) T cell responses were restored by pharmacologic inhibition of IDO. Reprogrammed Treg cells can thus participate as previously unrecognized drivers of certain early CD8(+) T cell responses.
Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Cross-Priming , Melanoma, Experimental/immunology , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Regulatory/metabolism , Adoptive Transfer , Animals , Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Cell Transdifferentiation/drug effects , Cells, Cultured , Cross-Priming/drug effects , Forkhead Transcription Factors/biosynthesis , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Lymphocyte Activation/drug effects , Melanoma, Experimental/drug therapy , Mice , Mice, Inbred Strains , Oligodeoxyribonucleotides/administration & dosage , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/pathology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Toll-Like Receptor 9/immunology , Tryptophan/analogs & derivatives , Tryptophan/pharmacologyABSTRACT
Innate lymphoid cells (ILCs) are a recently characterized family of immune cells that have critical roles in cytokine-mediated regulation of intestinal epithelial cell barrier integrity. Alterations in ILC responses are associated with multiple chronic human diseases, including inflammatory bowel disease, implicating a role for ILCs in disease pathogenesis. Owing to an inability to target ILCs selectively, experimental studies assessing ILC function have predominantly used mice lacking adaptive immune cells. However, in lymphocyte-sufficient hosts ILCs are vastly outnumbered by CD4(+) T cells, which express similar profiles of effector cytokines. Therefore, the function of ILCs in the presence of adaptive immunity and their potential to influence adaptive immune cell responses remain unknown. To test this, we used genetic or antibody-mediated depletion strategies to target murine ILCs in the presence of an adaptive immune system. We show that loss of retinoic-acid-receptor-related orphan receptor-γt-positive (RORγt(+)) ILCs was associated with dysregulated adaptive immune cell responses against commensal bacteria and low-grade systemic inflammation. Remarkably, ILC-mediated regulation of adaptive immune cells occurred independently of interleukin (IL)-17A, IL-22 or IL-23. Genome-wide transcriptional profiling and functional analyses revealed that RORγt(+) ILCs express major histocompatibility complex class II (MHCII) and can process and present antigen. However, rather than inducing T-cell proliferation, ILCs acted to limit commensal bacteria-specific CD4(+) T-cell responses. Consistent with this, selective deletion of MHCII in murine RORγt(+) ILCs resulted in dysregulated commensal bacteria-dependent CD4(+) T-cell responses that promoted spontaneous intestinal inflammation. These data identify that ILCs maintain intestinal homeostasis through MHCII-dependent interactions with CD4(+) T cells that limit pathological adaptive immune cell responses to commensal bacteria.
Subject(s)
Bacteria/immunology , CD4-Positive T-Lymphocytes/immunology , Immunity, Innate/immunology , Intestines/immunology , Intestines/microbiology , Symbiosis , Animals , Antigen Presentation/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/pathology , Cell Proliferation , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Humans , Inflammation/pathology , Interleukin-17/metabolism , Interleukin-23/metabolism , Interleukins/metabolism , Intestines/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Interleukin-22ABSTRACT
Dietary lipids and their metabolites activate members of the peroxisome proliferative-activated receptor (PPAR) family of transcription factors and are critical for colonic health. The PPARα isoform plays a vital role in regulating inflammation in various disease settings, but its role in intestinal inflammation, commensal homeostasis, and mucosal immunity in the gut are unclear. In this study, we demonstrate that the PPARα pathway in innate immune cells orchestrates gut mucosal immunity and commensal homeostasis by regulating the expression of IL-22 and the antimicrobial peptides RegIIIß, RegIIIγ, and calprotectin. Additionally, the PPARα pathway is critical for imparting regulatory phenotype in intestinal macrophages. PPARα deficiency in mice led to commensal dysbiosis in the gut, resulting in a microbiota-dependent increase in the expression of inflammatory cytokines and enhanced susceptibility to intestinal inflammation. Pharmacological activation of this pathway decreased the expression of inflammatory cytokines and ameliorated colonic inflammation. Taken together, these findings identify a new important innate immune function for the PPARα signaling pathway in regulating intestinal inflammation, mucosal immunity, and commensal homeostasis. Thus, the manipulation of the PPARα pathway could provide novel opportunities for enhancing mucosal immunity and treating intestinal inflammation.
Subject(s)
Gastrointestinal Microbiome/immunology , Homeostasis , Inflammation/prevention & control , PPAR alpha/metabolism , Signal Transduction , Animals , Cells, Cultured , Homeodomain Proteins/immunology , Inflammation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , PPAR alpha/deficiencyABSTRACT
B cells have both Ab-dependent and Ab-independent functions in systemic autoimmune diseases, including systemic lupus erythematosus (SLE). Ab-independent functions are known to be important, because mice with B cells but no secreted Ig have severe disease. These functions could include roles in lymphoid development, cytokine secretion, and Ag presentation; however, these possibilities have not been directly tested in SLE models. In this study, we show by lineage-specific ablation of MHC class II (MHCII) that B cell Ag presentation plays a nonredundant role in CD4(+) T cell activation and effector differentiation in the MRL.Fas(lpr) mouse model of SLE. MHCII-mediated interactions between B and T cells further promote B cell proliferation and differentiation, and, in fact, inefficient MHCII deletion on B cells led to strong selection of escaped cells in activated and plasmablast compartments, further underscoring the central role of B cell Ag presentation. Despite the leakiness in the system, B cell-specific MHCII deletion resulted in substantially ameliorated clinical disease. Hence, B cell Ag presentation is critical for T and B cell activation and differentiation, as well as target organ damage.
Subject(s)
Antigen Presentation/immunology , B-Lymphocytes/immunology , Genes, MHC Class II/immunology , Histocompatibility Antigens Class II/genetics , Lupus Erythematosus, Systemic/immunology , Animals , Autoantibodies/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation/immunology , Cell Proliferation/genetics , Cytokines/metabolism , Genes, MHC Class II/genetics , Histocompatibility Antigens Class II/immunology , Lupus Nephritis/immunology , Lymphocyte Activation/immunology , Mice , Mice, TransgenicABSTRACT
B cells are increasingly regarded as integral to the pathogenesis of multiple sclerosis, in part as a result of the success of B cell-depletion therapy. Multiple B cell-dependent mechanisms contributing to inflammatory demyelination of the CNS have been explored using experimental autoimmune encephalomyelitis (EAE), a CD4 T cell-dependent animal model for multiple sclerosis. Although B cell Ag presentation was suggested to regulate CNS inflammation during EAE, direct evidence that B cells can independently support Ag-specific autoimmune responses by CD4 T cells in EAE is lacking. Using a newly developed murine model of in vivo conditional expression of MHC class II, we reported previously that encephalitogenic CD4 T cells are incapable of inducing EAE when B cells are the sole APC. In this study, we find that B cells cooperate with dendritic cells to enhance EAE severity resulting from myelin oligodendrocyte glycoprotein (MOG) immunization. Further, increasing the precursor frequency of MOG-specific B cells, but not the addition of soluble MOG-specific Ab, is sufficient to drive EAE in mice expressing MHCII by B cells alone. These data support a model in which expansion of Ag-specific B cells during CNS autoimmunity amplifies cognate interactions between B and CD4 T cells and have the capacity to independently drive neuroinflammation at later stages of disease.
Subject(s)
Antigen Presentation/immunology , B-Lymphocytes/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Myelin-Oligodendrocyte Glycoprotein/immunology , Neurogenic Inflammation/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Histocompatibility Antigens Class II/biosynthesis , Histocompatibility Antigens Class II/immunology , Mice , Mice, Inbred C57BL , Multiple Sclerosis/pathology , Myelin-Oligodendrocyte Glycoprotein/administration & dosageABSTRACT
Breakdown in immunological tolerance to self-Ags or uncontrolled inflammation results in autoimmune disorders. Dendritic cells (DCs) play an important role in regulating the balance between inflammatory and regulatory responses in the periphery. However, factors in the tissue microenvironment and the signaling networks critical for programming DCs to control chronic inflammation and promote tolerance are unknown. In this study, we show that wnt ligand-mediated activation of ß-catenin signaling in DCs is critical for promoting tolerance and limiting neuroinflammation. DC-specific deletion of key upstream (lipoprotein receptor-related protein [LRP]5/6) or downstream (ß-catenin) mediators of canonical wnt signaling in mice exacerbated experimental autoimmune encephalomyelitis pathology. Mechanistically, loss of LRP5/6-ß-catenin-mediated signaling in DCs led to an increased Th1/Th17 cell differentiation but reduced regulatory T cell response. This was due to increased production of proinflammatory cytokines and decreased production of anti-inflammatory cytokines such as IL-10 and IL-27 by DCs lacking LRP5/6-ß-catenin signaling. Consistent with these findings, pharmacological activation of canonical wnt/ß-catenin signaling delayed experimental autoimmune encephalomyelitis onset and diminished CNS pathology. Thus, the activation of canonical wnt signaling in DCs limits effector T cell responses and represents a potential therapeutic approach to control autoimmune neuroinflammation.
Subject(s)
Dendritic Cells/immunology , Dendritic Cells/metabolism , Th1 Cells/immunology , Th17 Cells/immunology , Transforming Growth Factor beta/metabolism , Wnt Signaling Pathway , Animals , Cell Differentiation , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Gene Deletion , Gene Knockout Techniques , Inflammation Mediators/metabolism , Interleukin-10/metabolism , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Low Density Lipoprotein Receptor-Related Protein-6/genetics , Male , Mice , Mice, Transgenic , Signal Transduction , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Th1 Cells/cytology , Th1 Cells/metabolism , Th17 Cells/cytology , Th17 Cells/metabolism , Wnt Signaling Pathway/drug effects , Wnt3A Protein/metabolism , beta Catenin/metabolismABSTRACT
IL-17-expressing CD4+ T lymphocytes (Th17 cells) naturally reside in the intestine where specific cytokines and microbiota, such as segmented filamentous bacteria (SFB), promote their differentiation. Intestinal Th17 cells are thought to initially differentiate in the GALT and/or mesenteric lymph nodes upon Ag encounter and subsequently home to the lamina propria (LP) where they mediate effector functions. However, whether GALT and/or mesenteric lymph nodes are required for intestinal Th17 differentiation as well as how microbiota containing SFB regulate Ag-specific intestinal Th17 cells remain poorly defined. In this study, we observed that naive CD4+ T cells were abundant in the intestinal LP prior to weaning and that the accumulation of Th17 cells in response to microbiota containing SFB occurred in the absence of lymphotoxin-dependent lymphoid structures and the spleen. Furthermore, the differentiation of intestinal Th17 cells in the presence of microbiota containing SFB was dependent on MHC class II expression by CD11c+ cells. Lastly, the differentiation of Ag-specific Th17 cells required both the presence of cognate Ag and microbiota containing SFB. These findings suggest that microbiota containing SFB create an intestinal milieu that may induce Ag-specific Th17 differentiation against food and/or bacterial Ags directly in the intestinal LP.
Subject(s)
Bacteria/immunology , Cell Differentiation/immunology , Histocompatibility Antigens Class II/immunology , Intestines , Lymph Nodes/immunology , Mesentery/immunology , Th17 Cells/immunology , Animals , Antigens, Bacterial/immunology , Cell Differentiation/genetics , Histocompatibility Antigens Class II/genetics , Intestines/immunology , Intestines/microbiology , Mice , Mice, Knockout , Th17 Cells/cytologyABSTRACT
B cells are exposed to high levels of CD40 ligand (CD40L, CD154) in chronic inflammatory diseases. In addition, B cells expressing both CD40 and CD40L have been identified in human diseases such as autoimmune diseases and lymphoma. However, how such constitutively CD40-activated B cells under inflammation may impact on T cell response remains unknown. Using a mouse model in which B cells express a CD40L transgene (CD40LTg) and receive autocrine CD40/CD40L signaling, we show that CD40LTg B cells stimulated memory-like CD4 and CD8 T cells to express IL-10. This IL-10 expression by CD8 T cells was dependent on IFN-I and programmed cell death protein 1, and was critical for CD8 T cells to counterregulate their overactivation. Furthermore, adoptive transfer of naive CD8 T cells in RAG-1(-/-) mice normally induces colitis in association with IL-17 and IFN-γ cytokine production. Using this model, we show that adoptive cotransfer of CD40LTg B cells, but not wild-type B cells, significantly reduced IL-17 response and regulated colitis in association with IL-10 induction in CD8 T cells. Thus, B cells expressing CD40L can be a therapeutic goal to regulate inflammatory CD8 T cell response by IL-10 induction.
Subject(s)
B-Lymphocytes/immunology , CD40 Antigens/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Inflammation/immunology , Inflammation/metabolism , Lymphocyte Activation/immunology , Animals , Antigens/immunology , Autocrine Communication/immunology , CD40 Ligand/metabolism , Colitis/immunology , Colitis/metabolism , Cytotoxicity, Immunologic , Immunologic Memory , Inflammation/genetics , Interleukin-10/metabolism , Male , Mice , Mice, Transgenic , Programmed Cell Death 1 Receptor/metabolism , Receptor, Interferon alpha-beta/metabolism , Signal TransductionABSTRACT
A discrete population of splenocytes with attributes of dendritic cells (DCs) and coexpressing the B-cell marker CD19 is uniquely competent to express the T-cell regulatory enzyme indoleamine 2,3-dioxygenase (IDO) in mice treated with TLR9 ligands (CpGs). Here we show that IDO-competent cells express the B-lineage commitment factor Pax5 and surface immunoglobulins. CD19 ablation abrogated IDO-dependent T-cell suppression by DCs, even though cells with phenotypic attributes matching IDO-competent cells developed normally and expressed IDO in response to interferon gamma. Consequently, DCs and regulatory T cells (Tregs) did not acquire T-cell regulatory functions after TLR9 ligation, providing an alternative perspective on the known T-cell regulatory defects of CD19-deficient mice. DCs from B-cell-deficient mice expressed IDO and mediated T-cell suppression after TLR9 ligation, indicating that B-cell attributes were not essential for B-lymphoid IDO-competent cells to regulate T cells. Thus, IDO-competent cells constitute a distinctive B-lymphoid cell type with quintessential T-cell regulatory attributes and phenotypic features of both B cells and DCs.
Subject(s)
B-Lymphocytes/immunology , Dendritic Cells/immunology , Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology , T-Lymphocytes/immunology , Animals , Antigens, CD19/immunology , B-Lymphocytes/cytology , B-Lymphocytes/enzymology , Cell Lineage , Dendritic Cells/enzymology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Mice , Mice, Knockout , PAX5 Transcription Factor/metabolism , Spleen/immunology , T-Lymphocytes/enzymology , Toll-Like Receptor 9/immunologyABSTRACT
Strategies to increase intratumoral concentrations of an anticancer agent are desirable to optimize its therapeutic potential when said agent is efficacious primarily within a tumor but also have significant systemic side effects. Here, we generate a bifunctional protein by fusing interleukin-10 (IL-10) to a colony-stimulating factor-1 receptor (CSF-1R)-blocking antibody. The fusion protein demonstrates significant antitumor activity in multiple cancer models, especially head and neck cancer. Moreover, this bifunctional protein not only leads to the anticipated reduction in tumor-associated macrophages but also triggers proliferation, activation, and metabolic reprogramming of CD8+ T cells. Furthermore, it extends the clonotype diversity of tumor-infiltrated T cells and shifts the tumor microenvironment (TME) to an immune-active state. This study suggests an efficient strategy for designing immunotherapeutic agents by fusing a potent immunostimulatory molecule to an antibody targeting TME-enriched factors.
Subject(s)
Antineoplastic Agents , Neoplasms , Humans , CD8-Positive T-Lymphocytes , Interleukin-10/metabolism , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Colony-Stimulating Factor/metabolism , Tumor MicroenvironmentABSTRACT
CD40/CD40L engagement is essential to T cell-dependent B cell proliferation and differentiation. However, the precise role of CD40 signaling through cognate T-B interaction in the generation of germinal center and memory B cells is still incompletely understood. To address this issue, a B cell-specific CD40L transgene (CD40LBTg) was introduced into mice with B cell-restricted MHC class II deficiency. Using this mouse model, we show that constitutive CD40L expression on B cells alone could not induce germinal center differentiation of MHC class II-deficient B cells after immunization with T cell-dependent Ag. Thus, some other MHC class II-dependent T cell-derived signals are essential for the generation of germinal center B cells in response to T cell-dependent Ag. In fact, CD40LBTg mice generated a complex Ag-specific IgG1 response, which was greatly enhanced in early, but reduced in late, primary response compared with control mice. We also found that the frequency of Ag-specific germinal center B cells in CD40LBTg mice was abruptly reduced 1 wk after immunization. As a result, the numbers of Ag-specific IgG1 long-lived plasma cells and memory B cells were reduced. By histology, large numbers of Ag-specific plasma cells were found in T cell areas adjacent to Ag-specific germinal centers of CD40LBTg mice, temporarily during the second week of primary response. These results indicate that CD40L expression on B cells prematurely terminated their ongoing germinal center response and produced plasma cells. Our results support the notion that CD40 signaling is an active termination signal for germinal center reaction.
Subject(s)
Adjuvants, Immunologic/physiology , B-Lymphocyte Subsets/immunology , CD40 Ligand/biosynthesis , CD40 Ligand/genetics , Germinal Center/immunology , Germinal Center/metabolism , Plasma Cells/immunology , T-Lymphocyte Subsets/immunology , Adjuvants, Immunologic/biosynthesis , Adjuvants, Immunologic/genetics , Animals , B-Lymphocyte Subsets/metabolism , B-Lymphocyte Subsets/pathology , CD40 Antigens/genetics , CD40 Antigens/immunology , CD40 Antigens/physiology , CD40 Ligand/physiology , Cells, Cultured , Disease Models, Animal , Down-Regulation/genetics , Down-Regulation/immunology , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Histocompatibility Antigens Class II/genetics , Humans , Immunoglobulin G/biosynthesis , Mice , Mice, Inbred C57BL , Mice, Transgenic , Plasma Cells/metabolism , Plasma Cells/pathology , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/pathology , Up-Regulation/genetics , Up-Regulation/immunologyABSTRACT
The immunoregulatory enzyme indoleamine 2,3-dioxygenase (IDO) is expressed by a subset of murine plasmacytoid DCs (pDCs) in tumor-draining lymph nodes (TDLNs), where it can potently activate Foxp3+ regulatory T cells (Tregs). We now show that IDO functions as a molecular switch in TDLNs, maintaining Tregs in their normal suppressive phenotype when IDO was active, but allowing inflammation-induced conversion of Tregs to a polyfunctional T-helper phenotype similar to proinflammatory T-helper-17 (TH17) cells when IDO was blocked. In vitro, conversion of Tregs to the TH17-like phenotype was driven by antigen-activated effector T cells and required interleukin-6 (IL-6) produced by activated pDCs. IDO regulated this conversion by dominantly suppressing production of IL-6 in pDCs, in a GCN2-kinase dependent fashion. In vivo, using a model of established B16 melanoma, the combination of an IDO-inhibitor drug plus antitumor vaccine caused up-regulation of IL-6 in pDCs and in situ conversion of a majority of Tregs to the TH17 phenotype, with marked enhancement of CD8+ T-cell activation and antitumor efficacy. Thus, Tregs in TDLNs can be actively reprogrammed in situ into T-helper cells, without the need for physical depletion, and IDO serves as a key regulator of this critical conversion.
Subject(s)
Forkhead Transcription Factors/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/physiology , Lymph Nodes/immunology , Melanoma, Experimental/immunology , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Regulatory/immunology , Adoptive Transfer , Animals , Blotting, Western , Cancer Vaccines/therapeutic use , Chickens , Dendritic Cells/immunology , Immunophenotyping , Interleukin-17/metabolism , Interleukin-6/metabolism , Lymph Nodes/enzymology , Lymphocyte Activation , Melanoma, Experimental/enzymology , Melanoma, Experimental/pathology , Mice , Mice, Knockout , Mice, Transgenic , Ovalbumin/physiology , Receptors, Antigen, T-Cell/physiology , T-Lymphocytes, Helper-Inducer/pathologyABSTRACT
TLR ligands are effective vaccine adjuvants because they stimulate robust proinflammatory and immune effector responses and they abrogate suppression mediated by regulatory T cells (Tregs). Paradoxically, systemic administration of high doses of CpGs that bind to TLR9 ligands stimulated Tregs in mouse spleen to acquire potent suppressor activity dependent on interactions between programmed death-1 and its ligands. This response to CpG treatment manifested 8-12 h and was mediated by a rare population of plasmacytoid dendritic cells (CD19(+) pDC) induced to express the immunosuppressive enzyme IDO after TLR9 ligation. When IDO was blocked, CpG treatment did not activate Tregs, but instead stimulated pDCs to uniformly express the proinflammatory cytokine IL-6, which in turn reprogrammed Foxp3-lineage Tregs to express IL-17. Thus, CpG-induced IDO activity in pDCs acted as a pivotal molecular switch that induced Tregs to acquire a stable suppressor phenotype, while simultaneously blocking CpG-induced IL-6 expression required to reprogram Tregs to become Th17-like effector T cells. These findings support the hypothesis that IDO dominantly controls the functional status of Tregs in response to inflammatory stimuli in physiological settings.