Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Mycopathologia ; 189(1): 6, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231295

ABSTRACT

Madurella fahalii is a causative agent of the implantation mycosis mycetoma with decreased susceptibility to itraconazole, the preferred therapeutic drug to combat mycetoma. Here, we report the M. fahalii type-strain CBS 129176 genome assembly and annotation to identify a glutamic acid insert near the azole-binding pocket in the Cyp51A protein.


Subject(s)
Madurella , Mycetoma , Itraconazole/pharmacology , Azoles
2.
Med Mycol ; 61(8)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37451815

ABSTRACT

Eumycetoma is a subcutaneous implantation mycosis often found in the foot. One of the hallmarks of eumycetoma is the formation of grains. These grains are either black or white, and the consistency and morphology differs per causative agent. The two most common causative agents of black-grain eumycetoma are Madurella mycetomatis and Falciformispora senegalensis. Since grains cannot be formed in vitro, in vivo models are needed to study grain formation. Here, we used the invertebrate Galleria mellonella to establish an in vivo grain model for F. senegalensis. Three different F. senegalensis strains were selected, and four different inocula were used to infect G. mellonella larvae, ranging from 0.04 mg/larvae to 10 mg/larvae. Larval survival was monitored for 10 days. Grain formation was studied macroscopically and histologically. The efficacy of antifungal therapy was determined for itraconazole, amphotericin B, and terbinafine. A concentration of 10 mg F. senegalensis per larva was lethal for the majority of the larvae within 10 days. At this inoculum, grains were formed within 24 h after infection. The grains produced in the larvae resembled those formed in human patients. Amphotericin B given at 1 mg/kg 4 h, 28 h, and 52 h after infection prolonged larval survival. No enhanced survival was noted for itraconazole or terbinafine. In conclusion, we developed a F. senegalensis grain model in G. mellonella larvae in which grains were formed that were similar to those formed in patients. This model can be used to monitor grain formation over time and study antifungal efficacy.


Within eumycetoma lesions, the causative agents are embedded in grains. However, the grains differ per causative agent. In this study, we developed a grain model of Falciformispora senegalensis in the larvae of Galleria mellonella. This model can be used in the future to study the efficacy of novel antifungal agents.


Subject(s)
Moths , Mycetoma , Humans , Animals , Antifungal Agents/pharmacology , Larva/microbiology , Amphotericin B/pharmacology , Terbinafine , Itraconazole , Mycetoma/microbiology , Mycetoma/veterinary , Disease Models, Animal , Moths/microbiology
3.
Med Mycol ; 61(11)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37960934

ABSTRACT

Mycetoma is a neglected tropical disease commonly caused by the fungus Madurella mycetomatis. Standard treatment consists of extensive treatment with itraconazole in combination with surgical excision of the infected tissue, but has a low success rate. To improve treatment outcomes, novel treatment strategies are needed. Here, we determined the potential of manogepix, a novel antifungal agent that targets the GPI-anchor biosynthesis pathway by inhibition of the GWT1 enzyme. Manogepix was evaluated by determining the minimal inhibitory concentrations (MICs) according to the CLSI-based in vitro susceptibility assay for 22 M. mycetomatis strains and by in silico protein comparison of the target protein. The synergy between manogepix and itraconazole was determined using a checkerboard assay. The efficacy of clinically relevant dosages was assessed in an in vivo grain model in Galleria mellonella larvae. MICs for manogepix ranged from <0.008 to >8 mg/l and 16/22 M. mycetomatis strains had an MIC ≥4 mg/ml. Differences in MICs were not related to differences observed in the GWT1 protein sequence. For 70% of the tested isolates, synergism was found between manogepix and itraconazole in vitro. In vivo, enhanced survival was not observed upon admission of 8.6 mg/kg manogepix, nor in combination treatment with 5.7 mg/kg itraconazole. MICs of manogepix were high, but the in vitro antifungal activity of itraconazole was enhanced in combination therapy. However, no efficacy of manogepix was found in an in vivo grain model using clinically relevant dosages. Therefore, the therapeutic potential of manogepix in mycetoma caused by M. mycetomatis seems limited.


Treatment of Madurella mycetomatis-caused mycetoma consists of extensive exposure to antifungals and surgery. To improve therapy, we evaluated manogepix, a novel antifungal agent, as a therapeutic option against M. mycetomatis. Our findings suggest limited therapeutic potential for manogepix.


Subject(s)
Madurella , Mycetoma , Animals , Itraconazole/pharmacology , Itraconazole/therapeutic use , Mycetoma/drug therapy , Mycetoma/microbiology , Mycetoma/veterinary , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use
4.
Med Mycol ; 60(2)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35064672

ABSTRACT

Eumycetoma is a neglected tropical disease, and Madurella mycetomatis, the most common causative agent of this disease forms black grains in hosts. Melanin was discovered to be one of the constituents in grains. Melanins are hydrophobic, macromolecular pigments formed by oxidative polymerisation of phenolic or indolic compounds. M. mycetomatis was previously known to produce DHN-melanin and pyomelanin in vitro. These melanin was also discovered to decrease M. mycetomatis's susceptibility to antifungals itraconazole and ketoconazole in vitro. These findings, however, have not been confirmed in vivo. To discover the melanin biosynthesis pathways used by M. mycetomatis in vivo and to determine if inhibiting melanin production would increase M. mycetomatis's susceptibility to itraconazole, inhibitors targeting DHN-, DOPA- and pyomelanin were used. Treatment with DHN-melanin inhibitors tricyclazole, carpropamid, fenoxanil and DOPA-melanin inhibitor glyphosate in M. mycetomatis infected Galleria mellonella larvae resulted in presence of non-melanized grains. Our finding suggested that M. mycetomatis is able to produce DOPA-melanin in vivo. Inhibiting DHN-melanin with carpropamid in combination with the antifungal itraconazole also significantly increased larvae survival. Our results suggested that combination treatment of antifungals and melanin inhibitors can be an alternative treatment strategy that can be further explored. Since the common black-grain eumycetoma causing agents uses similar melanin biosynthesis pathways, this strategy may be applied to them and other eumycetoma causative agents. LAY SUMMARY: Melanin protects fungi from environmental stress and antifungals. We have discovered that Madurella mycetomatis produces DHN-, pyomelanin and DOPA-melanin in vivo. Inhibiting M. mycetomatis DHN-melanin biosynthesis increases therapeutic value of the antifungal itraconazole in vivo.


Subject(s)
Madurella , Mycetoma , Animals , Antifungal Agents/pharmacology , Dihydroxyphenylalanine/analogs & derivatives , Itraconazole/pharmacology , Mycetoma/drug therapy , Mycetoma/veterinary
5.
Med Mycol ; 60(7)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35833294

ABSTRACT

Eumycetoma is a neglected tropical infection of the subcutaneous tissue, characterized by tumor-like lesions and most commonly caused by the fungus Madurella mycetomatis. In the tissue, M. mycetomatis organizes itself in grains, and within a single lesion, thousands of grains can be present. The current hypothesis is that all these grains originate from a single causative agent, however, this hypothesis was never proven. Here, we used our recently developed MmySTR assay, a highly discriminative typing method, to determine the genotypes of multiple grains within a single lesion. Multiple grains from surgical lesions obtained from 11 patients were isolated and genotyped using the MmySTR panel. Within a single lesion, all tested grains shared the same genotype. Only in one single grain from one patient, a difference of one repeat unit in one MmySTR marker was noted relative to the other grains from that patient. We conclude that within these lesions the grains originate from a single clone and that the inherent unstable nature of the microsatellite markers may lead to small genotypic differences. LAY ABSTRACT: In lesions of the implantation mycosis mycetoma many Madurella mycetomatis grains are noted. It was unknown if grains arose after implantation of a single isolate or a mixture of genetically diverse isolates. By typing the mycetoma grains we showed that all grains within a single lesion were clonal and originated from a single isolate.


Subject(s)
Madurella , Mycetoma , Animals , Genotype , Madurella/genetics , Mycetoma/diagnosis , Mycetoma/microbiology , Mycetoma/veterinary
6.
J Antimicrob Chemother ; 75(4): 936-941, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31904836

ABSTRACT

OBJECTIVES: Eumycetoma is currently treated with a combination of itraconazole therapy and surgery, with limited success. Recently, olorofim, the lead candidate of the orotomides, a novel class of antifungal agents, entered a Phase II trial for the treatment of invasive fungal infections. Here we determined the activity of olorofim against Madurella mycetomatis, the main causative agent of eumycetoma. METHODS: Activity of olorofim against M. mycetomatis was determined by in silico comparison of the target gene, dihydroorotate dehydrogenase (DHODH), and in vitro susceptibility testing. We also investigated the in vitro interaction between olorofim and itraconazole against M. mycetomatis. RESULTS: M. mycetomatis and Aspergillus fumigatus share six out of seven predicted binding residues in their DHODH DNA sequence, predicting susceptibility to olorofim. Olorofim demonstrated excellent potency against M. mycetomatis in vivo with MICs ranging from 0.004 to 0.125 mg/L and an MIC90 of 0.063 mg/L. Olorofim MICs were mostly one dilution step lower than the itraconazole MICs. In vitro interaction studies demonstrated that olorofim and itraconazole work indifferently when combined. CONCLUSIONS: We demonstrated olorofim has potent in vitro activity against M. mycetomatis and should be further evaluated in vivo as a treatment option for this disease.


Subject(s)
Madurella , Mycetoma , Acetamides , Antifungal Agents/pharmacology , Humans , Mycetoma/drug therapy , Piperazines , Pyrimidines , Pyrroles
7.
PLoS Negl Trop Dis ; 18(4): e0012092, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38578808

ABSTRACT

Madurella mycetomatis is the main cause of mycetoma, a chronic granulomatous infection for which currently no adequate therapy is available. To improve therapy, more knowledge on a molecular level is required to understand how M. mycetomatis is able to cause this disease. However, the genetic toolbox for M. mycetomatis is limited. To date, no method is available to genetically modify M. mycetomatis. In this paper, a protoplast-mediated transformation protocol was successfully developed for this fungal species, using hygromycin as a selection marker. Furthermore, using this method, a cytoplasmic-GFP-expressing M. mycetomatis strain was created. The reported methodology will be invaluable to explore the pathogenicity of M. mycetomatis and to develop reporter strains which can be useful in drug discovery as well as in genetic studies.


Subject(s)
Hygromycin B , Madurella , Protoplasts , Transformation, Genetic , Hygromycin B/pharmacology , Hygromycin B/analogs & derivatives , Madurella/genetics , Madurella/drug effects , Drug Resistance, Fungal/genetics , Mycetoma/microbiology , Mycetoma/drug therapy , Cinnamates/pharmacology
8.
PLoS Negl Trop Dis ; 16(2): e0010159, 2022 02.
Article in English | MEDLINE | ID: mdl-35120131

ABSTRACT

Eumycetoma is a chronic subcutaneous neglected tropical disease that can be caused by more than 40 different fungal causative agents. The most common causative agents produce black grains and belong to the fungal orders Sordariales and Pleosporales. The current antifungal agents used to treat eumycetoma are itraconazole or terbinafine, however, their cure rates are low. To find novel drugs for eumycetoma, we screened 400 diverse drug-like molecules from the Pandemic Response Box against common eumycetoma causative agents as part of the Open Source Mycetoma initiative (MycetOS). 26 compounds were able to inhibit the growth of Madurella mycetomatis, Madurella pseudomycetomatis and Madurella tropicana, 26 compounds inhibited Falciformispora senegalensis and seven inhibited growth of Medicopsis romeroi in vitro. Four compounds were able to inhibit the growth of all five species of fungi tested. They are the benzimidazole carbamates fenbendazole and carbendazim, the 8-aminoquinolone derivative tafenoquine and MMV1578570. Minimal inhibitory concentrations were then determined for the compounds active against M. mycetomatis. Compounds showing potent activity in vitro were further tested in vivo. Fenbendazole, MMV1782387, ravuconazole and olorofim were able to significantly prolong Galleria mellonella larvae survival and are promising candidates to explore in mycetoma treatment and to also serve as scaffolds for medicinal chemistry optimisation in the search for novel antifungals to treat eumycetoma.


Subject(s)
Antifungal Agents/pharmacology , Drug Evaluation, Preclinical , Mycetoma/drug therapy , Acetamides/pharmacology , Animals , Ascomycota/drug effects , Drug Discovery , Fenbendazole/pharmacology , Madurella/drug effects , Moths/microbiology , Neglected Diseases , Piperazines/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Thiazoles/pharmacology , Triazoles/pharmacology
9.
PLoS Negl Trop Dis ; 15(6): e0009488, 2021 06.
Article in English | MEDLINE | ID: mdl-34106933

ABSTRACT

Mycetoma is a devastating neglected tropical infection of the subcutaneous tissue and most commonly caused by the fungus Madurella mycetomatis. Treatment of mycetoma consists of a combination of a long term antifungal treatment with itraconazole and surgery. However, treatment is associated with low success rates. Therefore, there is a need to identify novel treatments for mycetoma. CIN-102 is a synthetic partial copy of cinnamon oils with activity against many pathogenic bacteria and fungi. In this study we determined the in vitro activity of CIN-102 against 21 M. mycetomatis isolates and its in vivo efficacy in a M. mycetomatis infected Galleria mellonella larval model. In vitro, CIN-102 was active against M. mycetomatis with MICs ranging from 32 µg/mL to 512 µg/mL. 128 µg/mL was needed to inhibit the growth in 50% of tested isolates. In vivo, concentrations below the MIC of 40 mg/kg and 80 mg/kg CIN-102 prolonged larval survival, but higher concentrations of CIN-102 did not.


Subject(s)
Antifungal Agents/pharmacology , Benzoates/pharmacology , Cinnamates/pharmacology , Cinnamomum zeylanicum/chemistry , Madurella/drug effects , Mycetoma/microbiology , Terpenes/pharmacology , Animals , Benzoates/chemical synthesis , Cinnamates/chemical synthesis , Drug Combinations , Drug Synergism , Humans , Larva/drug effects , Larva/growth & development , Madurella/genetics , Madurella/growth & development , Microbial Sensitivity Tests , Moths/microbiology , Mycetoma/drug therapy , Terpenes/chemical synthesis
10.
PLoS Negl Trop Dis ; 14(4): e0008190, 2020 04.
Article in English | MEDLINE | ID: mdl-32267851

ABSTRACT

Mycetoma is a neglected chronic and granulomatous infection primarily associated with the fungal pathogen Madurella mycetomatis. Characteristic of this infection is the formation of grains. However, the processes leading to grain formation are not known. In this study, we employed a proteomic approach to characterise M. mycetomatis grain formation in Galleria mellonella larvae and map the processes leading to grain formation over time. For this, at 1 day, 3 days and 7 days post-inoculation, proteins from grains and hemolymph were extracted and analysed by label-free mass spectrometry. A total of 87, 51 and 48 M. mycetomatis proteins and 713, 997, 18 G. mellonella proteins were found in grains on day 1, 3 and 7 post-inoculation respectively. M. mycetomatis proteins were mainly involved in cellular metabolic processes and numerous enzymes were encountered. G. mellonella proteins were primarily involved in the nodulation process. The proteins identified were linked to nodulation and grain formation and four steps of grain formation were identified. The results of this proteomic approach could in the future be used to design novel strategies to interfere with mycetoma grain formation and to combat this difficult to treat infection.


Subject(s)
Larva/growth & development , Madurella/growth & development , Moths/growth & development , Moths/microbiology , Mycetoma/pathology , Animals , Disease Models, Animal , Larva/microbiology , Proteomics
11.
PLoS Negl Trop Dis ; 12(4): e0006437, 2018 04.
Article in English | MEDLINE | ID: mdl-29698504

ABSTRACT

Eumycetoma is a chronic infectious disease characterized by a large subcutaneous mass, often caused by the fungus Madurella mycetomatis. A combination of surgery and prolonged medication is needed to treat this infection with a success rate of only 30%. There is, therefore, an urgent need to find more effective drugs for the treatment of this disease. In this study, we screened 800 diverse drug-like molecules and identified 215 molecules that were active in vitro. Minimal inhibitory concentrations were determined for the 13 most active compounds. One of the most potent compounds, a fenarimol analogue for which a large analogue library is available, led to the screening of an additional 35 compounds for their in vitro activity against M. mycetomatis hyphae, rendering four further hit compounds. To assess the in vivo potency of these hit compounds, a Galleria mellonella larvae model infected with M. mycetomatis was used. Several of the compounds identified in vitro demonstrated promising efficacy in vivo in terms of prolonged larval survival and/or reduced fungal burden. The results presented in this paper are the starting point of an Open Source Mycetoma (MycetOS) approach in which members of the global scientific community are invited to participate and contribute as equal partners. We hope that this initiative, coupled with the promising new hits we have reported, will lead to progress in drug discovery for this most neglected of neglected tropical diseases.


Subject(s)
Antifungal Agents/therapeutic use , Madurella/drug effects , Mycetoma/drug therapy , Pyrimidines/therapeutic use , Animals , Female , Hyphae/drug effects , Larva/drug effects , Mycetoma/microbiology , Neglected Diseases
SELECTION OF CITATIONS
SEARCH DETAIL