ABSTRACT
BackgroundSince its emergence in December 2019, over 700 million people worldwide have been infected with SARS-CoV-2 up to May 2024. While early rollout of mRNA vaccines against COVID-19 has saved many lives, there was increasing immune escape of new virus variants. Longitudinal monitoring of population-wide SARS-CoV-2 antibody responses from regular sample collection irrespective of symptoms provides representative data on infection and seroconversion/seroreversion rates.AimTo examine adaptive and cellular immune responses of a German SARS-CoV-2 outbreak cohort through several waves of infection with different virus variants.MethodsUtilising a 31-month longitudinal seroepidemiological study (n = 1,446; mean age:â¯50â¯years, range:â¯2-103) initiated during the first SARS-CoV-2 superspreading event (February 2020) in Heinsberg, Germany, we analysed acute infection, seroconversion and virus neutralisation at five follow-up visits between October 2020 and November 2022; cellular and cross-protective immunity against SARS-CoV-2 Omicron variants were also examined.ResultsSARS-CoV-2 spikeâ¯(S)-specific IgAs decreased shortly after infection, while IgGs remained stable. Both increased significantly after vaccination. We predict an 18-month half-life of S IgGs upon infection. Nucleocapsid (N)-specific responses declined over 12 months post-infection but increased (p < 0.0001) during Omicron. Frequencies of SARS-CoV-2-specific TNF-alpha+/IFN-gamma+â¯CD4+ T-cells declined over 12 months after infection (p < 0.01). SARS-CoV-2 S antibodies and neutralisation titres were highest in triple-vaccinated participants infected between April 2021 and November 2022 compared with infections between April 2020 and January 2021. Cross neutralisation against Omicron BQ.1.18 and XBB.1.5 was very low in all groups.ConclusionInfection and/or vaccination did not provide the population with cross-protection against Omicron variants.
Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Reinfection , SARS-CoV-2 , Seroconversion , Humans , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , COVID-19/epidemiology , Longitudinal Studies , Germany/epidemiology , Antibodies, Viral/blood , Middle Aged , Adult , Male , Antibodies, Neutralizing/blood , Female , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Aged , Reinfection/immunology , Reinfection/virology , Reinfection/prevention & control , Seroepidemiologic Studies , Adolescent , Young Adult , Child , Child, Preschool , Aged, 80 and over , VaccinationABSTRACT
Although HIV-specific CD8 T cells are effective in controlling HIV infection, they fail to clear infection even in the presence of antiretroviral therapy (ART) and cure strategies such as "shock-and-kill." Little is known how ART is contributing to HIV-specific CD8 T cell function and the ability to clear HIV infection. Therefore, we first assessed the cytokine polyfunctionality and proliferation of CD8 T cells from ART-treated HIV+ individuals directly ex vivo and observed a decline in the multifunctional response as well as proliferation indices of these cells in individuals treated with integrase inhibitor (INSTI) based ART regimens compared to both protease inhibitor (PI) and nonnucleoside reverse transcriptase inhibitor (NNRTI) based regimens. We next cocultured CD8 T cells with different drugs individually and were able to observe reduced functional properties with significantly decreased ability of CD8 T cells to express IFN-γ, MIP1ß and TNF-α only after treatment with INSTI-based regimens. Furthermore, previously activated and INSTI-treated CD8 T cells demonstrated reduced capacity to express perforin and granzyme B compared to PI and NNRTI treated cells. Unexpectedly, CD8 T cells treated with dolutegravir showed a similar killing ability 7 dpi compared to emtricitabine or rilpivirine treated cells. We next used a live cell imaging assay to determine the migratory capacity of CD8 T cells. Only INSTI-treated cells showed less migratory activity after SDF-1α stimulation compared to NRTI regimens. Our data show that the choice of ART can have a significant impact on CD8 T cell effector functions, but the importance for potential eradication attempts is unknown. IMPORTANCE Integrase Strand Transfer Inhibitors (INSTI) are recommended by national and international guidelines as a key component of ART in the treatment of HIV infected patients. In particular, their efficacy, tolerability and low drug-drug interaction profile have made them to the preferred choice as part of the first-line regimen in treatment-naive individuals. Here, we demonstrate that the choice of ART can have a significant impact on function and metabolism of CD8 T cells. In summary, our study provides first evidence on a significant, negative impact on CD8 T cell effector functions in the presence of two INSTIs, dolutegravir and elvitegravir, which may contribute to the limited success of eradicating HIV-infected cells through "shock-and-kill" strategies. Although our findings are coherent with recent studies highlighting a possible role of dolutegravir in weight gain, further investigations are necessary to fully understand the impact of INSTI-based regimens on the health of the individual during antiretroviral therapy.
Subject(s)
CD8-Positive T-Lymphocytes , HIV Infections , HIV Integrase Inhibitors , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , CD8-Positive T-Lymphocytes/drug effects , HIV Infections/drug therapy , HIV Integrase Inhibitors/pharmacology , Humans , Reverse Transcriptase Inhibitors/therapeutic useABSTRACT
OBJECTIVE: Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by epithelial cell injury, fibroblast activation and excessive extracellular matrix deposition. Although protein arginine methyltransferase 1 (PRMT1) was found to regulate cell proliferation, differentiation and migration, its role in the development/progression of IPF has not yet been described. RESULTS: Expression of PRMT1 was elevated in lung homogenates from IPF patients. Significant upregulation of PRMT1 expression was also observed in the lungs of bleomycin-treated mice. Immunohistochemical analysis revealed PRMT1-positive staining in fibroblasts/myofibroblasts and alveolar type II cells of IPF lungs and in fibrotic lesions of bleomycin-injured lungs. Fibroblasts isolated from IPF lungs demonstrated increased PRMT1 expression. Interleukin-4 (IL-4), a profibrotic cytokine, enhanced the expression of PRMT1 and the migration of donor and IPF fibroblasts. Interference with the expression or the activity of PRMT1 diminished the migration of the cells in response to IL-4. Strikingly, even though the incubation of donor and IPF fibroblasts with IL-4 did not affect their proliferation, depletion, but not blockage of PRMT1 activity suppressed cell growth. CONCLUSIONS: PRMT1 can contribute to the development of pulmonary fibrosis by regulating fibroblast activities. Thus, interference with its expression and/or activity may provide a novel therapeutic option for patients with IPF.
ABSTRACT
The first major COVID-19 outbreak in Germany occurred in Heinsberg in February 2020 with 388 officially reported cases. Unexpectedly, the first outbreak happened in a small town with little to no travelers. We used phylogenetic analyses to investigate the origin and spread of the virus in this outbreak. We sequenced 90 (23%) SARS-CoV-2 genomes from the 388 reported cases including the samples from the first documented cases. Phylogenetic analyses of these sequences revealed mainly two circulating strains with 74 samples assigned to lineage B.3 and 6 samples assigned to lineage B.1. Lineage B.3 was introduced first and probably caused the initial spread. Using phylogenetic analysis tools, we were able to identify closely related strains in France and hypothesized the possible introduction from France.
ABSTRACT
We present a case of SARS-CoV-2 B.1. 525 infection in a healthcare worker despite the presence of highly neutralizing, multivariant-specific antibodies 7 weeks after full vaccination with the mRNA vaccine BNT162b2. We show that the virus replicated to high levels in the upper respiratory tract over the course of several days in the presence of strong antibody responses. The virus was readily propagatable in vitro, demonstrating the potential to transmit to others, bolstered by the fact that several household members were equally infected. This highlights the importance of protective measures even in vaccinated individuals.
ABSTRACT
Direct acting antivirals (DAAs) revolutionized the therapy of chronic hepatitis C infection. However, unexpected high recurrence rates of hepatocellular carcinoma (HCC) after DAA treatment became an issue in patients with advanced cirrhosis and fibrosis. In this study, we aimed to investigate an impact of DAA treatment on the molecular changes related to HCC development and progression in hepatoma cell lines and primary human hepatocytes. We found that treatment with sofosbuvir (SOF), a backbone of DAA therapy, caused an increase in EGFR expression and phosphorylation. As a result, enhanced translocation of EGFR into the nucleus and transactivation of factors associated with cell cycle progression, B-MYB and Cyclin D1, was detected. Serine/threonine kinase profiling identified additional pathways, especially the MAPK pathway, also activated during SOF treatment. Importantly, the blocking of EGFR kinase activity by erlotinib during SOF treatment prevented all downstream events. Altogether, our findings suggest that SOF may have an impact on pathological processes in the liver via the induction of EGFR signaling. Notably, zidovudine, another nucleoside analogue, exerted a similar cell phenotype, suggesting that the observed effects may be induced by additional members of this drug class.
Subject(s)
Antiviral Agents/therapeutic use , Hepatitis C, Chronic/drug therapy , Liver/drug effects , Sofosbuvir/therapeutic use , Antiviral Agents/pharmacology , Humans , Liver/pathology , Risk Factors , Sofosbuvir/pharmacologyABSTRACT
The enzyme acid sphingomyelinase (ASM) hydrolyzes sphingomyelin to ceramide and is thereby involved in several cellular processes such as differentiation, proliferation, and apoptosis in different cell types. However, the function of ASM in T cells is still not well characterized. Here, we used T cell-specific ASM overexpressing mice (t-ASM/CD4cre) to clarify the impact of cell-intrinsic ASM activity on T cell function in vitro and in vivo. We showed that t-ASM/CD4cre mice exhibit decreased frequencies of Foxp3+ T regulatory cells (Tregs) within the spleen. Enforced T cell-specific ASM expression resulted in less efficient induction of Tregs and promoted differentiation of CD4+CD25- naïve T cells into IFN-γ producing Th1 cells in vitro. Further analysis revealed that ASM-overexpressing T cells from t-ASM/CD4cre mice show elevated T cell receptor (TCR) signaling activity accompanied with increased proliferation upon stimulation in vitro. Plasmodium yoelii infection of t-ASM/CD4cre mice resulted in enhanced T cell activation and was associated with reduced parasitemia in comparison to infected control mice. Hence, our results provide evidence that ASM activity modulates T cell function in vitro and in vivo.
Subject(s)
Malaria/immunology , Plasmodium yoelii/physiology , Sphingomyelin Phosphodiesterase/metabolism , T-Lymphocytes, Regulatory/immunology , Animals , Cell Differentiation , Cells, Cultured , Forkhead Transcription Factors/metabolism , Humans , Lymphocyte Activation , Mice , Parasitemia , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Up-RegulationABSTRACT
During chronic HIV infection, immune cells become increasingly dysfunctional and exhausted. Little is known about how immune functions are restored after initiation of antiretroviral therapy (ART). In this study, we assessed cellular and metabolic activity and evaluated the effect of individual antiretrovirals on cellular subsets ex vivo in ART-treated and treatment-naive chronically HIV-infected individuals. We observed that cellular respiration was significantly decreased in most immune cells in chronic HIV infection. The respiration was correlated to immune activation and the inhibitory receptor programmed cell death 1 on CD8+ T cells. ART restored the metabolic phenotype, but the respiratory impairment persisted in CD4+ T cells. This was particularly the case for individuals receiving integrase strand transfer inhibitors. CD4+ T cells from these individuals showed a significant reduction in ex vivo proliferative capacity compared with individuals treated with protease inhibitors or nonnucleoside reverse transcriptase inhibitors. We noticed a significant decrease in respiration of cells treated with dolutegravir (DLG) or elvitegravir (EVG) and a switch from polyfunctional to TNF-α-dominated "stress" immune response. There was no effect on glycolysis, consistent with impaired mitochondrial function. We detected increased levels of mitochondrial ROS and mitochondrial mass. These findings indicate that EVG and DLG use is associated with slow proliferation and impaired respiration with underlying mitochondrial dysfunction, resulting in overall decreased cellular function in CD4+ T cells.