Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Proc Biol Sci ; 290(1997): 20222185, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37122259

ABSTRACT

Viscosity determines the resistance of haemolymph flow through the insect body. For flying insects, viscosity is a major physiological parameter limiting flight performance by controlling the flow rate of fuel to the flight muscles, circulating nutrients and rapidly removing metabolic waste products. The more viscous the haemolymph, the greater the metabolic energy needed to pump it through confined spaces. By employing magnetic rotational spectroscopy with nickel nanorods, we showed that viscosity of haemolymph in resting hawkmoths (Sphingidae) depends on wing size non-monotonically. Viscosity increases for small hawkmoths with high wingbeat frequencies, reaches a maximum for middle-sized hawkmoths with moderate wingbeat frequencies, and decreases in large hawkmoths with slower wingbeat frequencies but greater lift. Accordingly, hawkmoths with small and large wings have viscosities approaching that of water, whereas hawkmoths with mid-sized wings have more than twofold greater viscosity. The metabolic demands of flight correlate with significant changes in circulatory strategies via modulation of haemolymph viscosity. Thus, the evolution of hovering flight would require fine-tuned viscosity adjustments to balance the need for the haemolymph to carry more fuel to the flight muscles while decreasing the viscous dissipation associated with its circulation.


Subject(s)
Flight, Animal , Moths , Animals , Viscosity , Flight, Animal/physiology , Biomechanical Phenomena , Insecta , Wings, Animal/physiology
2.
J Exp Biol ; 226(19)2023 10 01.
Article in English | MEDLINE | ID: mdl-37724664

ABSTRACT

Hovering hawkmoths expend significant energy while feeding, which should select for greater feeding efficiency. Although increased feeding efficiency has been implicitly assumed, it has never been assessed. We hypothesized that hawkmoths have proboscises specialized for gathering nectar passively. Using contact angle and capillary pressure to evaluate capillary action of the proboscis, we conducted a comparative analysis of wetting and absorption properties for 13 species of hawkmoths. We showed that all 13 species have a hydrophilic proboscis. In contradistinction, the proboscises of all other tested lepidopteran species have a wetting dichotomy with only the distal ∼10% hydrophilic. Longer proboscises are more wettable, suggesting that species of hawkmoths with long proboscises are more efficient at acquiring nectar by the proboscis surface than are species with shorter proboscises. All hawkmoth species also show strong capillary pressure, which, together with the feeding behaviors we observed, ensures that nectar will be delivered to the food canal efficiently. The patterns we found suggest that different subfamilies of hawkmoths use different feeding strategies. Our comparative approach reveals that hawkmoths are unique among Lepidoptera and highlights the importance of considering the physical characteristics of the proboscis to understand the evolution and diversification of hawkmoths.


Subject(s)
Butterflies , Manduca , Animals , Plant Nectar , Wettability , Feeding Behavior
3.
J Theor Biol ; 510: 110525, 2021 02 07.
Article in English | MEDLINE | ID: mdl-33065142

ABSTRACT

Proboscises of many fluid-feeding insects share a common architecture: they have a partially open food canal along their length. This feature has never been discussed in relation to the feeding mechanism. We formulated and solved a fluid mechanics model of fluid uptake and estimated the time required to completely fill the food canal of the entire proboscis through the openings along its length. Butterflies and moths are taken as illustrative and representative of fluid-feeding insects. We demonstrated that the proposed mechanism of filling the proboscis with fluid through permeable lengthwise bands, in association with a thin film of saliva in the food canal, offers a competitive pathway for fluid uptake. Compared with the conventional mechanism of fluid uptake through apically restricted openings, the new mechanism provides a faster rate of fluid uptake, especially for long-tongued insects. Accordingly, long-tongued insects with permeable lengthwise bands would be able to more rapidly exploit a broader range of liquids in the form of films, pools, and discontinuous columns, thereby conserving energy and minimizing exposure to predators, particularly for hovering insects.


Subject(s)
Butterflies , Animals , Gastrointestinal Tract , Saliva
4.
Soft Matter ; 14(43): 8698-8708, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-30335123

ABSTRACT

Using theoretical and computational modeling, we focus on dynamics of gels filled with uniformly dispersed ferromagnetic nanoparticles subjected to electromagnetic (EM) irradiation within the GHz frequency range. As a polymer matrix, we choose poly(N-isopropylacrylamide) gel, which has a low critical solution temperature and shrinks upon heating. When these composites are irradiated with a frequency close to the Ferro-Magnetic Resonance (FMR) frequency, the heating rate increases dramatically. The energy dissipation of EM signals within the magnetic nanoparticles results in the heating of the gel matrix. We show that the EM signal causes volume phase transitions, leading to large deformations of the sample for a range of system parameters. We propose a model that accounts for the dynamic coupling between the elastodynamics of the polymer gel and the FMR heating of magnetic nanoparticles. This coupling is nonlinear: when the system is heated, the gel shrinks during the volume phase transition, and the particle concentration increases, which in turn results in an increase of the heating rates as long as the concentration of nanoparticles does not exceed a critical value. We show that the system exhibits high selectivity to the frequency of the incident EM signal and can result in a large mechanical feedback in response to a small change in the applied signal. These results suggest the design of a new class of soft active gel-based materials remotely controlled by low power EM signals within the GHz frequency range.

5.
Faraday Discuss ; 199: 101-114, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28451662

ABSTRACT

We developed a special electrochemical cell enabling quantitative analysis and in situ X-ray nanotomography of metal/electrolyte interfaces subject to corrosion. Using this cell and applying the nodoid model to describe menisci formed on tungsten wires during anodization, the evolution of the electrolyte surface tension, the concentration of reaction products, and the meniscus contact angle were studied. In contrast to the electrowetting effect, where the applied electric field decreases the contact angle of electrolytes, anodization of the tungsten wires increases the contact angle of the meniscus. Hence, an electric field favors dewetting rather than wetting of the newly formed surface. The discovered effect opens up new opportunities for the control of wetting phenomena and calls for the revision of existing theories of electrowetting.

6.
Phys Chem Chem Phys ; 17(35): 23121-31, 2015 Sep 21.
Article in English | MEDLINE | ID: mdl-26279498

ABSTRACT

Electropolishing of metals often leads to supersaturation conditions resulting in precipitation of complex compounds. The solubility diagrams and Gibbs adsorption isotherms of the electropolishing products are thus very important to understand the thermodynamic mechanism of precipitation of reaction products. Electropolishing of tungsten wires in aqueous solutions of potassium hydroxide is used as an example illustrating the different thermodynamic scenarios of electropolishing. Electropolishing products are able to form highly viscous films immiscible with the surrounding electrolyte or porous shells adhered to the wire surface. Using X-ray nanotomography, we discovered a gel-like phase formed at the tungsten surface during electropolishing. The results of these studies suggest that the electropolishing products can form a rich library of compounds. The surface tension of the electrolyte depends on the metal oxide ions and alkali-metal complexes.

7.
Langmuir ; 30(48): 14638-47, 2014 Dec 09.
Article in English | MEDLINE | ID: mdl-25397585

ABSTRACT

Precursors derived from the hydrolysis of organic or inorganic salts have been widely used to produce ceramic coatings for a broad variety of applications. When applying the liquid precursors to the substrates, it is extremely challenging to control the film uniformity and homogeneity. The rate of solvent evaporation at different locations is different, causing the viscosity variation and flows in the film. There is very limited knowledge about the viscosity change in evaporating ceramic precursors. Therefore, it is crucial to understand the effect of evaporation on viscosity variation in thin films and droplets. We use magnetic rotational spectroscopy to study the time dependence of viscosity in mullite precursors. A correlation between the viscosity change and evaporation kinetics is revealed. This correlation was used to relate the change of viscosity to the concentration of mullite. A master curve relating viscosity to the mullite concentration was constructed and used to propose a possible scenario of the viscosity increase during solvent evaporation.

8.
J Exp Biol ; 217(Pt 12): 2130-8, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24920837

ABSTRACT

Fluid-feeding Lepidoptera use an elongated proboscis, conventionally modeled as a drinking straw, to feed from pools and films of liquid. Using the monarch butterfly, Danaus plexippus (Linnaeus), we show that the inherent structural features of the lepidopteran proboscis contradict the basic assumptions of the drinking-straw model. By experimentally characterizing permeability and flow in the proboscis, we show that tapering of the food canal in the drinking region increases resistance, significantly hindering the flow of fluid. The calculated pressure differential required for a suction pump to support flow along the entire proboscis is greater than 1 atm (~101 kPa) when the butterfly feeds from a pool of liquid. We suggest that behavioral strategies employed by butterflies and moths can resolve this paradoxical pressure anomaly. Butterflies can alter the taper, the interlegular spacing and the terminal opening of the food canal, thereby controlling fluid entry and flow, by splaying the galeal tips apart, sliding the galeae along one another, pulsing hemolymph into each galeal lumen, and pressing the proboscis against a substrate. Thus, although physical construction of the proboscis limits its mechanical capabilities, its functionality can be modified and enhanced by behavioral strategies.


Subject(s)
Butterflies/physiology , Models, Biological , Animal Structures/anatomy & histology , Animal Structures/physiology , Animal Structures/ultrastructure , Animals , Butterflies/anatomy & histology , Butterflies/ultrastructure , Feeding Behavior , Microscopy, Electron, Scanning , Permeability , Pressure
9.
Soft Matter ; 10(16): 2816-24, 2014 Apr 28.
Article in English | MEDLINE | ID: mdl-24668160

ABSTRACT

We developed an experimental protocol to analyze the behaviour of a model fiber-based magnetic grabber. A fiber is vertically suspended and fixed to the substrate by its upper end. A magnetic droplet is attached to the free end of the fiber and when a permanent magnet approaches the droplet, the fiber is forced to bow and finally jumps to the magnet. It appears that one can flex the micro-fibers by very small micro or even nano-Newton forces. Using this setup, we discovered a hysteresis of fiber attachment/detachment: the pathway of the fiber jumping to and off the magnet depends on the distance between the magnet and the clamped end. This phenomenon was successfully explained by the Euler-Benoulli model of an elastic beam. The observed hysteresis of fiber attachment/detachment was attributed to the multiple equilibrium configurations of the fiber tip placed in a dipole-type magnetic field.

10.
Soft Matter ; 10(4): 609-15, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24652161

ABSTRACT

We studied spontaneous formation of an internal meniscus by dipping glass capillaries of 25 µm to 350 µm radii into low volatile hexadecane and tributyl phosphate. X-ray phase contrast and high speed optical microscopy imaging were employed. We showed that the meniscus completes its formation when the liquid column is still shorter than the capillary radius. After that, the meniscus travels about ten capillary radii at a constant velocity. We demonstrated that the experimental observations can be explained by introducing a friction force linearly proportional to the meniscus velocity with a friction coefficient depending on the air/liquid/solid triplet. It was demonstrated that the friction coefficient does not depend on the capillary radius. Numerical solution of the force balance equation revealed four different uptake regimes that can be specified in a phase portrait. This phase portrait was found to be in good agreement with the experimental results and can be used as a guide for the design of thin porous absorbers.

11.
Soft Matter ; 10(12): 1917-23, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24800272

ABSTRACT

In a non-uniform magnetic field, the droplets of colloids of nickel nanorods and nanobeads aggregate to form a cusp at the droplet surface not deforming the entire droplet shape. When the field is removed, nanorods diffuse away and the cusp disappears. Spherical particles can form cusps in a similar way, but they stay aggregated after the release of the field; finally, the aggregates settle down to the bottom of the drop. The X-ray phase contrast imaging reveals that nanorods in the cusps stay parallel to each other without visible spatial order of their centers of mass. The formation of cusps can be explained with a model that includes magnetostatic and surface tension forces. The discovered possibility of controlled assembly and quenching of nanorod orientation under the cusped liquid surface offers vast opportunities for alignment of carbon nanotubes, nanowires and nanoscrolls, prior to spinning them into superstrong and multifunctional fibers. Magnetostatic and electrostatic analogies suggest that a similar ideal alignment can be achieved with the rod-like dipoles subject to a strong electric field.


Subject(s)
Magnetics , Nanotubes, Carbon/chemistry , Nanotubes/chemistry , Colloids/chemistry , Gold/chemistry , Magnetic Phenomena , Nanowires/chemistry , Surface Properties
12.
Acta Biomater ; 184: 273-285, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944324

ABSTRACT

To probe its environment, the flying insect controllably flexes, twists, and maneuvers its antennae by coupling mechanical deformations with the sensory output. We question how the materials properties of insect antennae could influence their performance. A comparative study was conducted on four hawkmoth species: Manduca sexta, Ceratomia catalpae, Manduca quinquemaculata, and Xylophanes tersa. The morphology of the antennae of three hawkmoths that hover while feeding and one putatively non-nectar-feeding hawkmoth (Ceratomia catalpa) do not fundamentally differ, and all the antennae are comb-like (i.e., pectinate), markedly in males but weakly in females. Applying different weights to the free end of extracted cantilevered antennae, we discovered anisotropy in flexural rigidity when the antenna is forced to bend dorsally versus ventrally. The flexural rigidity of male antennae was less than that of females. Compared with the hawkmoths that hover while feeding, Ceratomia catalpae has almost two orders of magnitude lower flexural rigidity. Tensile tests showed that the stiffness of male and female antennae is almost the same. Therefore, the differences in flexural rigidity are explained by the distinct shapes of the antennal pectination. Like bristles in a comb, the pectinations provide extra rigidity to the antenna. We discuss the biological implications of these discoveries in relation to the flight habits of hawkmoths. Flexural anisotropy of antennae is expected in other groups of insects, but the targeted outcome may differ. Our work offers promising new applications of shaped fibers as mechanical sensors. STATEMENT OF SIGNIFICANCE: Insect antennae are blood-filled, segmented fibers with muscles in the two basal segments. The long terminal segment is muscle-free but can be flexed. Our comparative analysis of mechanical properties of hawkmoth antennae revealed a new feature: antenna resistance to bending depends on the bending direction. Our discovery replaces the conventional textbook scenario considering hawkmoth antennae as rigid rods. We showed that the pectinate antennae of hawkmoths behave as a comb in which the bristles resist bending when they come together. This anisotropy of flexural resistance offers a new mode of environmental sensing that has never been explored. The principles we found apply to other insects with non-axisymmetric antennae. Our work offers new applications for shaped fibers that could be designed to sense the flows.


Subject(s)
Arthropod Antennae , Animals , Female , Male , Arthropod Antennae/physiology , Moths/physiology , Manduca/physiology , Biomechanical Phenomena , Tensile Strength
13.
Langmuir ; 29(33): 10596-602, 2013 Aug 20.
Article in English | MEDLINE | ID: mdl-23875644

ABSTRACT

We developed a novel technique enabling determination of the permeability of electrospun yarns composed of hundreds of fibers. Analyzing the wicking kinetics in a yarn-in-a-tube composite conduit, it was found that the kinetic is very specific. The liquid was pulled by the capillary pressure associated with the meniscus in the tube while the main resistance comes from the yarn. Therefore, one can separate the yarn permeability from the capillary pressure, which cannot be done in wicking experiments with single yarns. A surface tensiometer (Cahn) was employed to collect the data on wicking kinetics of hexadecane into the yarn-in-a-tube conduits. Yarns from different polymers and blends were electrospun and characterized using the proposed protocol. We showed that the permeability of electrospun yarns can be varied in a broad range from 10(-14) m(2) to 10(-12) m(2) by changing the fiber diameter and packing density. These results offer new applications of electrospun yarns as flexible micro- and nanofluidic systems.

14.
Nano Lett ; 12(7): 3814-20, 2012 Jul 11.
Article in English | MEDLINE | ID: mdl-22716475

ABSTRACT

A reversible locking mechanism is established for the generation of anisotropic nanostructures by a magnetic field pulse in liquid matrices by balancing the thermal energy, short-range attractive and long-range repulsive forces, and dipole-dipole interactions using a specially tailored polymer shell of nanoparticles. The locking mechanism is used to precisely regulate the dimensions of self-assembled magnetic nanoparticle chains and to generate and disintegrate three-dimensional (3D) nanostructured materials in solvents and polymers.


Subject(s)
Magnetic Fields , Magnetite Nanoparticles/chemistry , Anisotropy , Hydrogen-Ion Concentration , Models, Molecular , Particle Size , Polymers/chemistry , Solvents/chemistry , Surface Properties
15.
J Am Chem Soc ; 134(31): 12916-9, 2012 Aug 08.
Article in English | MEDLINE | ID: mdl-22812454

ABSTRACT

Universal remote control of wetting behavior enabling the transition from a superomniphobic to an omniphilic wetting state in an external magnetic field via the alternation of reentrant curvature of a microstructured surface is demonstrated. This reconfigurable microtexture made of Ni micronails repels water, water-surfactant solutions, and practically all organic liquids, whereas it gets wetted by all of these liquids after a magnetic field pulse is applied.

16.
Langmuir ; 28(26): 10064-71, 2012 Jul 03.
Article in English | MEDLINE | ID: mdl-22668085

ABSTRACT

In situ characterization of minute amounts of fluids that rapidly change their rheological properties is a challenge. In this paper, the rheological properties of fluids were evaluated by examining the behavior of magnetic nanorods in a rotating magnetic field. We proposed a theory describing the rotation of a magnetic nanorod in a fluid when its viscosity increases with time exponentially fast. To confirm the theory, we studied the time-dependent rheology of microdroplets of 2-hydroxyethyl-methacrylate (HEMA)/diethylene glycol dimethacylate (DEGDMA)-based hydrogel during photopolymerization synthesis. We demonstrated that magnetic rotational spectroscopy provides rich physicochemical information about the gelation process. The method allows one to completely specify the time-dependent viscosity by directly measuring characteristic viscosity and characteristic time. Remarkably, one can analyze not only the polymer solution, but also the suspension enriched with the gel domains being formed. Since the probing nanorods are measured in nanometers, this method can be used for the in vivo mapping of the rheological properties of biofluids and polymers on a microscopic level at short time intervals when other methods fall short.


Subject(s)
Magnetic Phenomena , Nanotubes/chemistry , Rheology , Rotation , Spectrum Analysis , Ethylene Glycol/chemistry , Methacrylates/chemistry , Polymerization , Time Factors , Viscosity
17.
Micromachines (Basel) ; 13(7)2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35888799

ABSTRACT

Films formed by dip coating brass wires with dilute and semi-dilute solutions of polyvinyl butyral in benzyl alcohol were studied in their liquid and solid states. While dilute and semi-dilute solutions behaved as Maxwell viscoelastic fluids, the thickness of the liquid films followed the Landau-Levich-Derjaguin prediction for Newtonian fluids. At a very slow rate of coating, the film thickness was difficult to evaluate. Therefore, the dynamic contact angle was studied in detail. We discovered that polymer additives preserve the advancing contact angle at its static value while the receding contact angle follows the Cox-Voinov theory. In contrast, the thickness of solid films does not correlate with the Landau-Levich-Derjaguin predictions. Only solutions of high-molecular-weight polymers form smooth solid films. Solutions of low-molecular-weight polymers may form either solid films with an inhomogeneous roughness or solid polymer domains separated by the dry substrate. In technological applications, very dilute polymer solutions of high-molecular-weight polymers can be used to avoid inhomogeneities in solid films. These solutions form smooth solid films, and the film thickness can be controlled by the experimental coating conditions.

18.
J Colloid Interface Sci ; 607(Pt 1): 502-513, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34509121

ABSTRACT

HYPOTHESIS: The Landau-Levich-Derjaguin (LLD) theory is widely applied to predict the film thickness in the dip-coating process. However, the theory was designed only for flat plates and thin fibers. Fifty years ago, White and Tallmadge attempted to generalize the LLD theory to thick rods using a numerical solution for a static meniscus and the LLD theory to forcedly match their numeric solution with the LLD asymptotics. The White-Talmadge solution has been criticized for not being rigorous yet widely used in engineering applications mostly owing to the lack of alternative solutions. A new set of experiments significantly expanding the range of White-Tallmadge conditions showed that their theory cannot explain the experimental results. We then hypothesized that the results of LLD theory can be improved by restoring the non-linear meniscus curvature in the equation. With this modification, the obtained equation should be able to describe static menisci on any cylindrical rods and the film profiles observed at non-zero rod velocity. EXPERIMENT: To test the hypothesis, we distinguished capillary forces from viscous forces by running experiments with different rods and at different withdrawal velocities and video tracking the menisci profiles and measuring the weight of deposited films. The values of film thickness were then fitted with a mathematical model based on the modified LLD equation. We also fitted the meniscus profiles. FINDINGS: The results show that the derived equation allows one to reproduce the results of the LLD theory and go far beyond those to include rods of different radii. A new set of experimental data together with the White-Tallmadge experimental data are explained with the modified LLD theory. A set of simple formulas approximating numeric results have been derived. These formulas can be used in engineering applications for the prediction of the coating thickness.

19.
Acta Biomater ; 147: 102-119, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35649508

ABSTRACT

Insect antennae are hollow, blood-filled fibers with complex shape. Muscles in the two basal segments control antennal movement, but the rest (flagellum) is muscle-free. The insect can controllably flex, twist, and maneuver its antennae laterally. To explain this behavior, we performed a comparative study of structural and tensile properties of the antennae of Periplaneta americana (American cockroach), Manduca sexta (Carolina hawkmoth), and Vanessa cardui (painted lady butterfly). These antennae demonstrate a range of distinguishable tensile properties, responding either as brittle or strain-adaptive fibers that stiffen when stretched. Scanning electron microscopy and high-speed imaging of antennal breakup during stretching revealed complex coupling of blood pressure and cuticle deformation in antennae. A generalized Lamé theory of solid mechanics was developed to include the force-driven deformation of blood-filled antennal tubes. We validated the theory against experiments with artificial antennae with no adjustable parameters. Blood pressure increased when the insect inflated its antennae or decreased below ambient pressure when an external tensile load was applied to the antenna. The pressure-cuticle coupling can be controlled through changes of the blood volume in the antennal lumen. In insects that do not fill the antennal lumen with blood, this blood pressure control is lacking, and the antennae react only by muscular activation. We suggest that the principles we have discovered for insect antennae apply to other appendages that share a leg-derived ancestry. Our work offers promising new applications for multifunctional fiber-based microfluidics that could transport fluids and be manipulated by the same fluid on demand. STATEMENT OF SIGNIFICANCE: Insect antennae are blood-filled, segmented fibers with muscles in the two basal segments. The long terminal segment is muscle-free but can be flexed. To explain this behavior, we examined structure-function relationships of antennae of cockroaches, hawkmoths, and butterflies. Hawkmoth antennae behaved as brittle fibers, but butterfly and cockroach antennae showed strain-adaptive behavior like fibers that stiffen when stretched. Videomicroscopy of antennal breakup during stretching revealed complex coupling of blood pressure and cuticle deformation. Our solid mechanics model explains this behavior. Because antennae are leg-derived appendages, we suggest that the principles we found apply to other appendages of leg-derived ancestry. Our work offers new applications for multifunctional fiber-based microfluidics that could transport fluids and be manipulated by the fluid on demand.


Subject(s)
Butterflies , Periplaneta , Animals , Arthropod Antennae/physiology , Blood Pressure , Humans , Insecta , Movement , Periplaneta/physiology
20.
Langmuir ; 27(22): 13451-60, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-21961935

ABSTRACT

In this paper, we present the analyses of surface tension of surfactant-stabilized dispersions of carbon nanotubes. This method allows one to study interactions of carbon nanotubes with surfactants at different levels of nanotube loading when optical methods fall short in quantifying the level of nanotube separation. Sodium dodecyl sulfate was used as a stabilizing agent to uniformly disperse single-walled carbon nanotubes in an aqueous media. We show that surface tension is very sensitive to small changes of nanotube and surfactant concentrations. The experimental data suggest that, at moderate concentrations, surfactant displaces carbon nanotubes from the air-water interface and the nanotubes are mostly moved into the bulk of the liquid. By analyzing the surface tension as a function of surfactant concentration, we obtained the dependence of critical micelle concentration on nanotube loading. We then constructed the adsorption isotherm for dodecyl sulfate on carbon nanotubes and bundles of carbon nanotubes. The results of these experiments enabled us to extend the phase diagram of the produced dispersions to a broader range of surfactant and nanotube concentrations.

SELECTION OF CITATIONS
SEARCH DETAIL