Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Pharm Res ; 29(3): 722-38, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22009587

ABSTRACT

PURPOSE: The use of recombinant human interleukin (rhIL)-15 as a potential therapeutic immune modulator and anticancer agent requires pure, stable preparations. However, purified rhIL-15 preparations readily accumulated heterogeneities. We sought to improve rhIL-15 stability through process, formulation, and targeted amino acid changes. METHODS: The solution state of rhIL-15 versus buffer composition and temperature was studied using SEC and IEX methods. rhIL-15 deamidation was confirmed using RP-HPLC/ESI-MS, enzymatic labeling, and peptide mapping. Deamidation kinetics were measured versus buffer composition and pH using RP-HPLC. Deamidation-resistant rhIL-15 variants (N77A, N77S, N77Q, G78A, and [N71S/N72A/N77A]) were produced in E. coli, then assayed for T-cell culture expansion potency and deamidation resistance. RESULTS: Adding 20% ethanol to buffers or heating at ≥32°C dispersed rhIL-15 transient pairs, improving purification efficiencies. Asparagine 77 deamidated rapidly at pH 7.4 with activation energy of 22.9 kcal per mol. Deamidation in citrate buffer was 17-fold slower at pH 5.9 than at pH 7.4. Amino acid substitutions at N77 or G78 slowed deamidation ≥23-fold. rhIL-15 variants N77A and (N71S/N72A/N77A) were active in a CTLL-2 proliferation assay equivalent to unsubstituted rhIL-15. CONCLUSIONS: The N77A and (N71S/N72A/N77A) rhIL-15 variants are resistant to deamidation and remain potent, thus providing enhanced drug substances for clinical evaluation.


Subject(s)
Amino Acid Substitution , Asparagine/chemistry , Interleukin-15/chemistry , Interleukin-15/genetics , Amino Acid Sequence , Animals , Asparagine/genetics , Cell Line , Cell Proliferation/drug effects , Humans , Interleukin-15/pharmacology , Mice , Molecular Sequence Data , Protein Stability , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , T-Lymphocytes/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL