Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 106(5): 707-716, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32386537

ABSTRACT

Because polygenic risk scores (PRSs) for coronary heart disease (CHD) are derived from mainly European ancestry (EA) cohorts, their validity in African ancestry (AA) and Hispanic ethnicity (HE) individuals is unclear. We investigated associations of "restricted" and genome-wide PRSs with CHD in three major racial and ethnic groups in the U.S. The eMERGE cohort (mean age 48 ± 14 years, 58% female) included 45,645 EA, 7,597 AA, and 2,493 HE individuals. We assessed two restricted PRSs (PRSTikkanen and PRSTada; 28 and 50 variants, respectively) and two genome-wide PRSs (PRSmetaGRS and PRSLDPred; 1.7 M and 6.6 M variants, respectively) derived from EA cohorts. Over a median follow-up of 11.1 years, 2,652 incident CHD events occurred. Hazard and odds ratios for the association of PRSs with CHD were similar in EA and HE cohorts but lower in AA cohorts. Genome-wide PRSs were more strongly associated with CHD than restricted PRSs were. PRSmetaGRS, the best performing PRS, was associated with CHD in all three cohorts; hazard ratios (95% CI) per 1 SD increase were 1.53 (1.46-1.60), 1.53 (1.23-1.90), and 1.27 (1.13-1.43) for incident CHD in EA, HE, and AA individuals, respectively. The hazard ratios were comparable in the EA and HE cohorts (pinteraction = 0.77) but were significantly attenuated in AA individuals (pinteraction= 2.9 × 10-3). These results highlight the potential clinical utility of PRSs for CHD as well as the need to assemble diverse cohorts to generate ancestry- and ethnicity PRSs.


Subject(s)
Black or African American/genetics , Coronary Disease/genetics , Genetic Predisposition to Disease , Hispanic or Latino/genetics , Multifactorial Inheritance/genetics , White People/genetics , Cohort Studies , Female , Humans , Male , Middle Aged , Odds Ratio
2.
PLoS Genet ; 16(3): e1008684, 2020 03.
Article in English | MEDLINE | ID: mdl-32226016

ABSTRACT

Lipid levels are important markers for the development of cardio-metabolic diseases. Although hundreds of associated loci have been identified through genetic association studies, the contribution of genetic factors to variation in lipids is not fully understood, particularly in U.S. minority groups. We performed genome-wide association analyses for four lipid traits in over 45,000 ancestrally diverse participants from the Population Architecture using Genomics and Epidemiology (PAGE) Study, followed by a meta-analysis with several European ancestry studies. We identified nine novel lipid loci, five of which showed evidence of replication in independent studies. Furthermore, we discovered one novel gene in a PrediXcan analysis, minority-specific independent signals at eight previously reported loci, and potential functional variants at two known loci through fine-mapping. Systematic examination of known lipid loci revealed smaller effect estimates in African American and Hispanic ancestry populations than those in Europeans, and better performance of polygenic risk scores based on minority-specific effect estimates. Our findings provide new insight into the genetic architecture of lipid traits and highlight the importance of conducting genetic studies in diverse populations in the era of precision medicine.


Subject(s)
Lipids/blood , Lipids/genetics , Racial Groups/genetics , Databases, Genetic , Female , Genome-Wide Association Study/methods , Genotype , Humans , Lipids/analysis , Male , Metagenomics/methods , Minority Groups , Multifactorial Inheritance/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , United States/epidemiology
3.
Acta Neuropathol ; 143(5): 571-583, 2022 05.
Article in English | MEDLINE | ID: mdl-35412102

ABSTRACT

Tau deposition is one of two hallmark features of biologically defined Alzheimer's disease (AD) and is more closely related to cognitive decline than amyloidosis. Further, not all amyloid-positive individuals develop tauopathy, resulting in wide heterogeneity in clinical outcomes across the population with AD. We hypothesized that a polygenic risk score (PRS) based on tau PET (tau PRS) would capture the aggregate inherited susceptibility/resistance architecture influencing tau accumulation, beyond solely the measurement of amyloid-ß burden. Leveraging rich multimodal data from a population-based sample of older adults, we found that this novel tau PRS was a strong surrogate of tau PET deposition and captured a significant proportion of the variance in tau PET levels as compared with amyloid PET burden, APOE (apolipoprotein E) ε4 (the most common risk allele for AD), and a non-APOE PRS of clinical case-control AD risk variants. In independent validation samples, the tau PRS was associated with cerebrospinal fluid phosphorylated tau levels in one cohort and with postmortem Braak neurofibrillary tangle stage in another. We also observed an association of the tau PRS with longitudinal cognitive trajectories, including a statistical interaction of the tau PRS with amyloid burden on cognitive decline. Although additional study is warranted, these findings demonstrate the potential utility of a tau PRS for capturing the collective genetic background influencing tau deposition in the general population. In the future, a tau PRS could be leveraged for cost-effective screening and risk stratification to guide trial enrollment and clinical interventions in AD.


Subject(s)
Alzheimer Disease , Aged , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Amyloid , Apolipoprotein E4 , Cost-Benefit Analysis , Counseling , Humans , Prognosis , tau Proteins/cerebrospinal fluid , tau Proteins/genetics
4.
BMC Urol ; 20(1): 173, 2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33121461

ABSTRACT

BACKGROUND: The four most commonly-mutated genes in clear cell renal cell carcinoma (ccRCC) tumors are BAP1, PBRM1, SETD2 and VHL. And, there are currently 14 known RCC germline variants that have been reproducibly shown to be associated with RCC risk. However, the association of germline genetics with tumor genetics and clinical aggressiveness are unknown. METHODS: We analyzed 420 ccRCC patients from The Cancer Genome Atlas. Molecular subtype was determined based on acquired mutations in BAP1, PBRM1, SETD2 and VHL. Aggressive subtype was defined clinically using Mayo SSIGN score and molecularly using the ccA/ccB gene expression subtype. Publically-available Hi-C data were used to link germline risk variants with candidate target genes. RESULTS: The 8q24 variant rs35252396 was significantly associated with VHL mutation status (OR = 1.6, p = 0.0037) and SSIGN score (OR = 1.9, p = 0.00094), after adjusting for multiple comparisons. We observed that, while some germline variants have interactions with nearby genes, some variants demonstrate long-range interactions with target genes. CONCLUSIONS: These data further demonstrate the link between rs35252396, HIF pathway and ccRCC clinical aggressiveness, providing a more comprehensive picture of how germline genetics and tumor genetics interact with respect to tumor development and progression.


Subject(s)
Carcinoma, Renal Cell/genetics , Kidney Neoplasms/genetics , Mutation , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Carcinoma, Renal Cell/classification , Carcinoma, Renal Cell/pathology , Female , Humans , Kidney Neoplasms/classification , Kidney Neoplasms/pathology , Male
5.
PLoS Genet ; 9(3): e1003212, 2013.
Article in English | MEDLINE | ID: mdl-23544013

ABSTRACT

BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7 × 10(-8), HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4 × 10(-8), HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4 × 10(-8), HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P = 2×10(-4)). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%-50% compared to 81%-100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers.


Subject(s)
BRCA1 Protein/genetics , Breast Neoplasms/genetics , Genome-Wide Association Study , Ovarian Neoplasms/genetics , BRCA2 Protein/genetics , Breast Neoplasms/pathology , Female , Genetic Predisposition to Disease , Genotype , Heterozygote , Humans , Middle Aged , Mutation , Ovarian Neoplasms/pathology , Polymorphism, Single Nucleotide , Prognosis , Risk Factors
6.
Pharmacogenet Genomics ; 25(4): 157-63, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25714002

ABSTRACT

BACKGROUND: In tamoxifen-treated patients, breast cancer recurrence differs according to CYP2D6 genotype and endoxifen steady-state concentrations (Endx Css). The ¹³C-dextromethorphan breath test (DM-BT), labeled with ¹³C at the O-CH3 moiety, measures CYP2D6 enzyme activity. We sought to examine the ability of the DM-BT to identify known CYP2D6 genotypic poor metabolizers and examine the correlation between DM-BT and Endx Css. METHODS: DM-BT and tamoxifen pharmacokinetics were obtained at baseline, 3, and 6 months following tamoxifen initiation. Potent CYP2D6 inhibitors were prohibited. The correlation between baseline DM-BT with CYP2D6 genotype and Endx Css was determined. The association between baseline DM-BT (where values ≤0.9 is an indicator of poor in vivo CYP2D6 metabolism) and Endx Css (using values≤11.2 known to be associated with poorer recurrence free survival) was explored. RESULTS: A total of 91 patients were enrolled and 77 were eligible. CYP2D6 genotype was positively correlated with baseline, 3, and 6 months DM-BT (r ranging from 0.457-0. 60; P<0.001). Both CYP2D6 genotype (r=0.47, 0.56, P<0.0001), and baseline DM-BT (r=0.60, 0.54, P<0.001) were associated with 3 and 6 months Endx Css, respectively. Seven (78%) of nine patients with low (≤11.2 nmol/l) 3 month Endx Css also had low DM-BT (≤0.9) including 2/2 CYP2D6 PM/PM and 5/5 IM/PM. In contrast, one (2%) of 48 patients with a low DM-BT had Endx Css more than 11.2 nmol/l. CONCLUSION: In patients not taking potent CYP2D6 inhibitors, DM-BT was associated with CYP2D6 genotype and 3 and 6 months Endx Css but did not provide better discrimination of Endx Css compared with CYP2D6 genotype alone. Further studies are needed to identify additional factors which alter Endx Css.


Subject(s)
Antineoplastic Agents, Hormonal/pharmacokinetics , Antitussive Agents , Breast Neoplasms/drug therapy , Breath Tests/methods , Cytochrome P-450 CYP2D6/genetics , Dextromethorphan , Tamoxifen/pharmacokinetics , Adult , Aged , Aged, 80 and over , Antineoplastic Agents, Hormonal/administration & dosage , Breast Neoplasms/enzymology , Female , Genotype , Humans , Middle Aged , Polymorphism, Single Nucleotide , Tamoxifen/administration & dosage , Treatment Outcome
7.
Circ Genom Precis Med ; 17(3): e004272, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38380516

ABSTRACT

BACKGROUND: Predictive performance of polygenic risk scores (PRS) varies across populations. To facilitate equitable clinical use, we developed PRS for coronary heart disease (CHD; PRSCHD) for 5 genetic ancestry groups. METHODS: We derived ancestry-specific and multi-ancestry PRSCHD based on pruning and thresholding (PRSPT) and ancestry-based continuous shrinkage priors (PRSCSx) applied to summary statistics from the largest multi-ancestry genome-wide association study meta-analysis for CHD to date, including 1.1 million participants from 5 major genetic ancestry groups. Following training and optimization in the Million Veteran Program, we evaluated the best-performing PRSCHD in 176,988 individuals across 9 diverse cohorts. RESULTS: Multi-ancestry PRSPT and PRSCSx outperformed ancestry-specific PRSPT and PRSCSx across a range of tuning values. Two best-performing multi-ancestry PRSCHD (ie, PRSPTmult and PRSCSxmult) and 1 ancestry-specific (PRSCSxEUR) were taken forward for validation. PRSPTmult demonstrated the strongest association with CHD in individuals of South Asian ancestry and European ancestry (odds ratio per 1 SD [95% CI, 2.75 [2.41-3.14], 1.65 [1.59-1.72]), followed by East Asian ancestry (1.56 [1.50-1.61]), Hispanic/Latino ancestry (1.38 [1.24-1.54]), and African ancestry (1.16 [1.11-1.21]). PRSCSxmult showed the strongest associations in South Asian ancestry (2.67 [2.38-3.00]) and European ancestry (1.65 [1.59-1.71]), lower in East Asian ancestry (1.59 [1.54-1.64]), Hispanic/Latino ancestry (1.51 [1.35-1.69]), and the lowest in African ancestry (1.20 [1.15-1.26]). CONCLUSIONS: The use of summary statistics from a large multi-ancestry genome-wide meta-analysis improved the performance of PRSCHD in most ancestry groups compared with single-ancestry methods. Despite the use of one of the largest and most diverse sets of training and validation cohorts to date, improvement of predictive performance was limited in African ancestry. This highlights the need for larger genome-wide association study datasets of underrepresented populations to enhance the performance of PRSCHD.


Subject(s)
Coronary Disease , Genome-Wide Association Study , Multifactorial Inheritance , Humans , Coronary Disease/genetics , Male , Female , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Risk Factors , Middle Aged , Genetic Risk Score
8.
Cancer ; 119(3): 586-92, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-22915053

ABSTRACT

BACKGROUND: Increasing evidence shows chemotherapy in combination with vascular endothelial growth factor (VEGF) inhibition is a clinically active therapy for patients with metastatic melanoma (MM). METHODS: A phase 2 trial was conducted in chemotherapy-naive patients with unresectable stage IV MM who were randomized to temozolomide (200 mg/m(2) on days 1 through 5) and bevacizumab (10 mg/kg intravenously on days 1 and 15) every 28 days (Regimen TB) or nab-paclitaxel (100 mg/m(2) , or 80 mg/m(2) post-addendum 5 secondary to toxicity, on days 1, 8, and 15), bevacizumab (10 mg/kg on days 1 and 15), and carboplatin (area under the curve [AUC] 6 on day 1, or AUC 5 post-addendum 5) every 28 days (Regimen ABC). Accrual goal was 41 patients per regimen. The primary aim of this study was to estimate progression-free survival rate at 6 months (PFS6) in each regimen. A regimen would be considered promising if its PFS6 rate was > 60%. RESULTS: Ninety-three eligible patients (42 TB and 51 ABC) were enrolled. The majority of patients had M1c disease (20 TB and 26 ABC). The median PFS and overall survival times with ABC were 6.7 months and 13.9 months, respectively. Median PFS time and median overall survival with TB were 3.8 months and 12.3 months, respectively. The most common severe toxicities (≥ grade 3) in both regimens were cytopenias, fatigue, and thrombosis. Among the first 41 patients enrolled onto each regimen, PFS6 rate was 32.8% (95% confidence interval: 21.1%-51.2%) for TB and 56.1% (90% confidence interval: 44.7%-70.4%) for ABC. CONCLUSIONS: The addition of bevacizumab to nab-paclitaxel and carboplatin shows promising activity despite tolerability issues.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Melanoma/drug therapy , Skin Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Albumins/administration & dosage , Albumins/adverse effects , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Bevacizumab , Carboplatin/administration & dosage , Carboplatin/adverse effects , Dacarbazine/administration & dosage , Dacarbazine/adverse effects , Dacarbazine/analogs & derivatives , Female , Humans , Male , Melanoma/mortality , Melanoma/pathology , Middle Aged , Neoplasm Staging , Paclitaxel/administration & dosage , Paclitaxel/adverse effects , Skin Neoplasms/mortality , Skin Neoplasms/pathology , Survival Analysis , Temozolomide , Treatment Outcome , Young Adult
9.
medRxiv ; 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37609230

ABSTRACT

Background: Predictive performance of polygenic risk scores (PRS) varies across populations. To facilitate equitable clinical use, we developed PRS for coronary heart disease (PRSCHD) for 5 genetic ancestry groups. Methods: We derived ancestry-specific and multi-ancestry PRSCHD based on pruning and thresholding (PRSP+T) and continuous shrinkage priors (PRSCSx) applied on summary statistics from the largest multi-ancestry genome-wide meta-analysis for CHD to date, including 1.1 million participants from 5 continental populations. Following training and optimization of PRSCHD in the Million Veteran Program, we evaluated predictive performance of the best performing PRSCHD in 176,988 individuals across 9 cohorts of diverse genetic ancestry. Results: Multi-ancestry PRSP+T outperformed ancestry specific PRSP+T across a range of tuning values. In training stage, for all ancestry groups, PRSCSx performed better than PRSP+T and multi-ancestry PRS outperformed ancestry-specific PRS. In independent validation cohorts, the selected multi-ancestry PRSP+T demonstrated the strongest association with CHD in individuals of South Asian (SAS) and European (EUR) ancestry (OR per 1SD[95% CI]; 2.75[2.41-3.14], 1.65[1.59-1.72]), followed by East Asian (EAS) (1.56[1.50-1.61]), Hispanic/Latino (HIS) (1.38[1.24-1.54]), and weakest in African (AFR) ancestry (1.16[1.11-1.21]). The selected multi-ancestry PRSCSx showed stronger associacion with CHD in comparison within each ancestry group where the association was strongest in SAS (2.67[2.38-3.00]) and EUR (1.65[1.59-1.71]), progressively decreasing in EAS (1.59[1.54-1.64]), HIS (1.51[1.35-1.69]), and lowest in AFR (1.20[1.15-1.26]). Conclusions: Utilizing diverse summary statistics from a large multi-ancestry genome-wide meta-analysis led to improved performance of PRSCHD in most ancestry groups compared to single-ancestry methods. Improvement of predictive performance was limited, specifically in AFR and HIS, despite use of one of the largest and most diverse set of training and validation cohorts to date. This highlights the need for larger GWAS datasets of AFR and HIS individuals to enhance performance of PRSCHD.

10.
Nat Genet ; 55(6): 964-972, 2023 06.
Article in English | MEDLINE | ID: mdl-37248441

ABSTRACT

Spontaneous coronary artery dissection (SCAD) is an understudied cause of myocardial infarction primarily affecting women. It is not known to what extent SCAD is genetically distinct from other cardiovascular diseases, including atherosclerotic coronary artery disease (CAD). Here we present a genome-wide association meta-analysis (1,917 cases and 9,292 controls) identifying 16 risk loci for SCAD. Integrative functional annotations prioritized genes that are likely to be regulated in vascular smooth muscle cells and artery fibroblasts and implicated in extracellular matrix biology. One locus containing the tissue factor gene F3, which is involved in blood coagulation cascade initiation, appears to be specific for SCAD risk. Several associated variants have diametrically opposite associations with CAD, suggesting that shared biological processes contribute to both diseases, but through different mechanisms. We also infer a causal role for high blood pressure in SCAD. Our findings provide novel pathophysiological insights involving arterial integrity and tissue-mediated coagulation in SCAD and set the stage for future specific therapeutics and preventions.


Subject(s)
Coronary Artery Disease , Myocardial Infarction , Vascular Diseases , Humans , Female , Genome-Wide Association Study , Vascular Diseases/genetics , Coronary Artery Disease/genetics
11.
Neurooncol Pract ; 9(4): 259-270, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35859544

ABSTRACT

Knowledge about inherited and acquired genetics of adult diffuse glioma has expanded significantly over the past decade. Genomewide association studies (GWAS) stratified by histologic subtype identified six germline variants that were associated specifically with glioblastoma (GBM) and 12 that were associated with lower grade glioma. A GWAS performed using the 2016 WHO criteria, stratifying patients by IDH mutation and 1p/19q codeletion (as well as TERT promoter mutation), discovered that many of the known variants are associated with specific WHO glioma subtypes. In addition, the GWAS stratified by molecular group identified two additional novel regions: variants in D2HGDH that were associated with tumors that had an IDH mutation and a variant near FAM20C that was associated with tumors that had both IDH mutation and 1p/19q codeletion. The results of these germline associations have been used to calculate polygenic risk scores, from which to estimate relative and absolute risk of overall glioma and risk of specific glioma subtypes. We will review the concept of polygenic risk models and their potential clinical utility, as well as discuss the published adult diffuse glioma polygenic risk models. To date, these prior genetic studies have been done on European populations. Using the published glioma polygenic risk model, we show that the genetic associations published to date do not generalize across genetic ancestries, demonstrating that genetic studies need to be done on more diverse populations.

12.
Neuro Oncol ; 24(3): 384-395, 2022 03 12.
Article in English | MEDLINE | ID: mdl-34232318

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is an incurable disease with few approved therapeutic interventions. Radiation therapy (RT) and temozolomide (TMZ) remain the standards of care. The efficacy and optimal deployment schedule of the orally bioavailable small-molecule tumor checkpoint controller lisavanbulin alone, and in combination with, standards of care were assessed using a panel of IDH-wildtype GBM patient-derived xenografts. METHODS: Mice bearing intracranial tumors received lisavanbulin +/-RT +/-TMZ and followed for survival. Lisavanbulin concentrations in plasma and brain were determined by liquid chromatography with tandem mass spectrometry, while flow cytometry was used for cell cycle analysis. RESULTS: Lisavanbulin monotherapy showed significant benefit (P < .01) in 9 of 14 PDXs tested (median survival extension 9%-84%) and brain-to-plasma ratios of 1.3 and 1.6 at 2- and 6-hours postdose, respectively, validating previous data suggesting significant exposure in the brain. Prolonged lisavanbulin dosing from RT start until moribund was required for maximal benefit (GBM6: median survival lisavanbulin/RT 90 vs. RT alone 69 days, P = .0001; GBM150: lisavanbulin/RT 143 days vs. RT alone 73 days, P = .06). Similar observations were seen with RT/TMZ combinations (GBM39: RT/TMZ/lisavanbulin 502 days vs. RT/TMZ 249 days, P = .0001; GBM26: RT/TMZ/lisavanbulin 172 days vs. RT/TMZ 121 days, P = .04). Immunohistochemical analyses showed a significant increase in phospho-histone H3 with lisavanbulin treatment (P = .01). CONCLUSIONS: Lisavanbulin demonstrated excellent brain penetration, significant extension of survival alone or in RT or RT/TMZ combinations, and was associated with mitotic arrest. These data provide a strong clinical rationale for testing lisavanbulin in combination with RT or RT/TMZ in GBM patients.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/pathology , Glioblastoma/pathology , Heterografts , Humans , Mice , Microtubules/metabolism , Microtubules/pathology , Temozolomide/therapeutic use
13.
Am J Epidemiol ; 174(5): 574-81, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21742680

ABSTRACT

Glioma risk has consistently been inversely associated with allergy history but not with smoking history despite putative biologic plausibility. Data from 855 high-grade glioma cases and 1,160 controls from 4 geographic regions of the United States during 1997-2008 were analyzed for interactions between allergy and smoking histories and inherited variants in 5 established glioma risk regions: 5p15.3 (TERT), 8q24.21 (CCDC26/MLZE), 9p21.3 (CDKN2B), 11q23.3 (PHLDB1/DDX6), and 20q13.3 (RTEL1). The inverse relation between allergy and glioma was stronger among those who did not (odds ratio(allergy-glioma) = 0.40, 95% confidence interval: 0.28, 0.58) versus those who did (odds ratio(allergy-glioma) = 0.76, 95% confidence interval: 0.59, 0.97; P(interaction) = 0.02) carry the 9p21.3 risk allele. However, the inverse association with allergy was stronger among those who carried (odds ratio(allergy-glioma) = 0.44, 95% confidence interval: 0.29, 0.68) versus those who did not carry (odds ratio(allergy-glioma) = 0.68, 95% confidence interval: 0.54, 0.86) the 20q13.3 glioma risk allele, but this interaction was not statistically significant (P = 0.14). No relation was observed between glioma risk and smoking (odds ratio = 0.92, 95% confidence interval: 0.77, 1.10; P = 0.37), and there were no interactions for glioma risk of smoking history with any of the risk alleles. The authors' observations are consistent with a recent report that the inherited glioma risk variants in chromosome regions 9p21.3 and 20q13.3 may modify the inverse association of allergy and glioma.


Subject(s)
Alleles , Astrocytoma/genetics , Brain Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Glioblastoma/genetics , Hypersensitivity/complications , Polymorphism, Single Nucleotide , Smoking/adverse effects , Astrocytoma/etiology , Brain Neoplasms/etiology , Case-Control Studies , Female , Glioblastoma/etiology , Humans , Male , Middle Aged , Risk Factors
14.
Neuro Oncol ; 23(12): 2066-2075, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34107029

ABSTRACT

BACKGROUND: Appropriately designed preclinical patient-derived xenograft (PDX) experiments are important to accurately inform human clinical trials. There is little experimental design guidance regarding choosing the number of PDX lines to study, and the number of mice within each PDX line. METHODS: Retrospective data from IDH-wildtype glioblastoma preclinical experiments evaluating a uniform regimen of fractionated radiation (RT), temozolomide (TMZ) chemotherapy, and concurrent RT/TMZ across 27 PDX lines were used to evaluate experimental designs and empirically estimate statistical power for ANOVA and Cox regression. RESULTS: Increasing the number of PDX lines resulted in more precise and reproducible estimates of effect size. To achieve 80% statistical power using ANOVA, experiments using a single PDX line required subsampling of 6 mice per PDX for each treatment group to detect a difference in survival of 135 days, and 9 mice per PDX to detect a difference of 100 days. Alternatively, a design that used 10 PDX lines had greater than 80% power to detect a difference of 135 days with a single mouse per PDX per treatment group, a difference of 100 days with 2 mice per PDX per treatment, and 35 days with more than 10 mice per PDX per treatment. Power for Cox regression was slightly smaller than ANOVA for very small experiments regardless of effect size and slightly higher than ANOVA for detecting a smaller effect size of 35 days difference in survival for moderate-to-large experiments. CONCLUSIONS: Experimental designs using few mice across many PDX lines can provide robust results and account for inter-tumor variability.


Subject(s)
Brain Neoplasms , Glioblastoma , Animals , Cell Line, Tumor , Mice , Research Design , Retrospective Studies , Temozolomide , Xenograft Model Antitumor Assays
15.
Carcinogenesis ; 31(10): 1770-7, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20668009

ABSTRACT

To determine whether inherited variations in immune function single-nucleotide polymorphisms (SNPs), genes or pathways affect glioblastoma risk, we analyzed data from recent genome-wide association studies in conjunction with predefined immune function genes and pathways. Gene and pathway analyses were conducted on two independent data sets using 6629 SNPs in 911 genes on 17 immune pathways from 525 glioblastoma cases and 602 controls from the University of California, San Francisco (UCSF) and a subset of 6029 SNPs in 893 genes from 531 cases and 1782 controls from MD Anderson (MDA). To further assess consistency of SNP-level associations, we also compared data from the UK (266 cases and 2482 controls) and the Mayo Clinic (114 cases and 111 controls). Although three correlated epidermal growth factor receptor (EGFR) SNPs were consistently associated with glioblastoma in all four data sets (Mantel-Haenzel P values = 1 × 10⁻5 to 4 × 10⁻³), independent replication is required as genome-wide significance was not attained. In gene-level analyses, eight immune function genes were significantly (minP < 0.05) associated with glioblastoma; the IL-2RA (CD25) cytokine gene had the smallest minP values in both UCSF (minP = 0.01) and MDA (minP = 0.001) data sets. The IL-2RA receptor is found on the surface of regulatory T cells potentially contributing to immunosuppression characteristic of the glioblastoma microenvironment. In pathway correlation analyses, cytokine signaling and adhesion-extravasation-migration pathways showed similar associations with glioblastoma risk in both MDA and UCSF data sets. Our findings represent the first systematic description of immune genes and pathways that characterize glioblastoma risk.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/immunology , Glioblastoma/genetics , Glioblastoma/immunology , Polymorphism, Single Nucleotide , Adult , Brain Neoplasms/etiology , Cytokines/genetics , Female , Genome-Wide Association Study , Glioblastoma/etiology , Humans , Male , Signal Transduction
16.
Breast Cancer Res Treat ; 119(2): 453-62, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19404734

ABSTRACT

An RNAi-based functional screening of mitotic kinases in Drosophila recently identified a number of members of the kinome that are required for normal cell division. Depletion of these kinases resulted in a number of different mitotic abnormalities including spindle malformation, chromosome mis-segregation, centrosome amplification and failure of cytokinesis (Bettencourt-Dias et al. in Nature 432:980-987, 2004). Since mitotic defects are commonly observed in cancer cells, these kinases may contribute to tumor development and/or progression. To investigate whether common genetic variation in the mitotic kinases are associated with breast cancer risk, we genotyped 386 single nucleotide polymorphisms (SNPs) from 44 mitotic kinase genes, in 798 breast cancer cases and 843 unaffected controls from a clinic-based study. A total of 22 SNPs from 13 kinase genes displayed significant associations with breast cancer risk (P(trend) < or = 0.05), including two SNPs from FYN (rs6914091 and rs1465061) that remained of interest after accounting for multiple testing (q = 0.06). These associations were stronger when evaluating cases with estrogen and progesterone receptor positive tumors. In addition, haplotype-based tests identified significant associations with risk for common haplotypes of the MAST2 (P = 0.04) and MAP2K4 (P = 0.006) genes. Although requiring replication, these findings suggest that genetic polymorphisms in mitotic kinases that have been implicated in chromosome instability and aneuploidy may contribute to the development of breast cancer.


Subject(s)
Breast Neoplasms/genetics , Mitosis/genetics , Polymorphism, Single Nucleotide , Protein Kinases/genetics , Breast Neoplasms/enzymology , Breast Neoplasms/epidemiology , Breast Neoplasms/pathology , Case-Control Studies , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Gene Frequency , Genetic Predisposition to Disease , Haplotypes , Humans , Logistic Models , Midwestern United States/epidemiology , Odds Ratio , Risk Assessment , Risk Factors
17.
JAMA Cardiol ; 5(8): 929-938, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32374345

ABSTRACT

Importance: Spontaneous coronary artery dissection (SCAD), an idiopathic disorder that predominantly affects young to middle-aged women, has emerged as an important cause of acute coronary syndrome, myocardial infarction, and sudden cardiac death. Objective: To identify common single-nucleotide variants (SNVs) associated with SCAD susceptibility. Design, Setting, and Participants: This single-center genome-wide association study examined approximately 5 million genotyped and imputed SNVs and subsequent SNV-targeted replication analysis results in individuals enrolled in the Mayo Clinic SCAD registry from August 30, 2011, to August 2, 2018. Data analysis was performed from June 21, 2017, to December 30, 2019. Main Outcomes and Measures: Genetic loci and positional candidate genes associated with SCAD. Results: This study included 484 white women with SCAD (mean [SD] age, 46.6 [9.2] years) and 1477 white female controls in the discovery cohort (mean [SD] age, 64.0 [14.5] years) and 183 white women with SCAD (mean [SD] age, 47.1 [9.9] years) and 340 white female controls in the replication cohort (mean [SD] age, 51.0 [15.3] years). Associations with SCAD risk reached genome-wide significance at 3 loci (1q21.3 [OR, 1.78; 95% CI, 1.51-2.09; P = 2.63 × 10-12], 6p24.1 [OR, 1.77; 95% CI, 1.51-2.09; P = 7.09 × 10-12], and 12q13.3 [OR, 1.67; 95% CI, 1.42-1.97; P = 3.62 × 10-10]), and 7 loci had evidence suggestive of an association (1q24.2 [OR, 2.10; 95% CI, 1.58-2.79; P = 2.88 × 10-7], 3q22.3 [OR, 1.47; 95% CI, 1.26-1.71; P = 6.65 × 10-7], 4q34.3 [OR, 1.84; 95% CI, 1.44-2.35; P = 9.80 × 10-7], 8q24.3 [OR, 2.57; 95% CI, 1.76-3.75; P = 9.65 × 10-7], 15q21.1 [OR, 1.75; 95% CI, 1.40-2.18; P = 7.23 × 10-7], 16q24.1 [OR, 1.91; 95% CI, 1.49-2.44; P = 2.56 × 10-7], and 21q22.11 [OR, 2.11; 95% CI, 1.59-2.82; P = 3.12 × 10-7]) after adjusting for the top 5 principal components. Associations were validated for 5 of the 10 risk alleles in the replication cohort. In a meta-analysis of the discovery and replication cohorts, associations for the 5 SNVs were significant, with relatively large effect sizes (1q21.3 [OR, 1.77; 95% CI, 1.54-2.03; P = 3.26 × 10-16], 6p24.1 [OR, 1.71; 95% CI, 1.49-1.97; P = 4.59 × 10-14], 12q13.3 [OR, 1.69; 95% CI, 1.47-1.94; P = 1.42 × 10-13], 15q21.1 [OR, 1.79; 95% CI, 1.48-2.17; P = 2.12 × 10-9], and 21q22.11 [OR, 2.18; 95% CI, 1.70-2.81; P = 1.09 × 10-9]). Each index SNV was within or near a gene highly expressed in arterial tissue and previously linked to SCAD (PHACTR1) and/or other vascular disorders (LRP1, LINC00310, and FBN1). Conclusions and Relevance: This study revealed 5 replicated risk loci and positional candidate genes for SCAD, most of which are associated with extracoronary arteriopathies. Moreover, the alternate alleles of 3 SNVs have been previously associated with atherosclerotic coronary artery disease, further implicating allelic susceptibility to coronary artery atherosclerosis vs dissection.


Subject(s)
Coronary Vessel Anomalies/genetics , Genetic Loci/genetics , Genetic Predisposition to Disease/genetics , Vascular Diseases/congenital , Case-Control Studies , Coronary Vessel Anomalies/diagnosis , Female , Genes/genetics , Genome-Wide Association Study , Humans , Middle Aged , Polymorphism, Single Nucleotide/genetics , Talin/genetics , Vascular Diseases/diagnosis , Vascular Diseases/genetics
18.
Brain Commun ; 2(2): fcaa159, 2020.
Article in English | MEDLINE | ID: mdl-33426524

ABSTRACT

Tau deposition is a key biological feature of Alzheimer's disease that is closely related to cognitive impairment. However, it remains poorly understood why certain individuals may be more susceptible to tau deposition while others are more resistant. The recent availability of in vivo assessment of tau burden through positron emission tomography provides an opportunity to test the hypothesis that common genetic variants may influence tau deposition. We performed a genome-wide association study of tau-positron emission tomography on a sample of 754 individuals over age 50 (mean age 72.4 years, 54.6% men, 87.6% cognitively unimpaired) from the population-based Mayo Clinic Study of Aging. Linear regression was performed to test nucleotide polymorphism associations with AV-1451 (18F-flortaucipir) tau-positron emission tomography burden in an Alzheimer's-signature composite region of interest, using an additive genetic model and covarying for age, sex and genetic principal components. Genome-wide significant associations with higher tau were identified for rs76752255 (P = 9.91 × 10-9, ß = 0.20) in the tau phosphorylation regulatory gene PPP2R2B (protein phosphatase 2 regulatory subunit B) and for rs117402302 (P = 4.00 × 10-8, ß = 0.19) near IGF2BP3 (insulin-like growth factor 2 mRNA-binding protein 3). The PPP2R2B association remained genome-wide significant after additionally covarying for global amyloid burden and cerebrovascular disease risk, while the IGF2BP3 association was partially attenuated after accounting for amyloid load. In addition to these discoveries, three single nucleotide polymorphisms within MAPT (microtubule-associated protein tau) displayed nominal associations with tau-positron emission tomography burden, and the association of the APOE (apolipoprotein E) ɛ4 allele with tau-positron emission tomography was marginally nonsignificant (P = 0.06, ß = 0.07). No associations with tau-positron emission tomography burden were identified for other single nucleotide polymorphisms associated with Alzheimer's disease clinical diagnosis in prior large case-control studies. Our findings nominate PPP2R2B and IGF2BP3 as novel potential influences on tau pathology which warrant further functional characterization. Our data are also supportive of previous literature on the associations of MAPT genetic variation with tau, and more broadly supports the inference that tau accumulation may have a genetic architecture distinct from known Alzheimer's susceptibility genes, which may have implications for improved risk stratification and therapeutic targeting.

19.
JAMA Oncol ; 6(4): 495-503, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32027343

ABSTRACT

Importance: Per the World Health Organization 2016 integrative classification, newly diagnosed glioblastomas are separated into isocitrate dehydrogenase gene 1 or 2 (IDH)-wild-type and IDH-mutant subtypes, with median patient survival of 1.2 and 3.6 years, respectively. Although maximal resection of contrast-enhanced (CE) tumor is associated with longer survival, the prognostic importance of maximal resection within molecular subgroups and the potential importance of resection of non-contrast-enhanced (NCE) disease is poorly understood. Objective: To assess the association of resection of CE and NCE tumors in conjunction with molecular and clinical information to develop a new road map for cytoreductive surgery. Design, Setting, and Participants: This retrospective, multicenter cohort study included a development cohort from the University of California, San Francisco (761 patients diagnosed from January 1, 1997, through December 31, 2017, with 9.6 years of follow-up) and validation cohorts from the Mayo Clinic (107 patients diagnosed from January 1, 2004, through December 31, 2014, with 5.7 years of follow-up) and the Ohio Brain Tumor Study (99 patients with data collected from January 1, 2008, through December 31, 2011, with a median follow-up of 10.9 months). Image accessors were blinded to patient groupings. Eligible patients underwent surgical resection for newly diagnosed glioblastoma and had available survival, molecular, and clinical data and preoperative and postoperative magnetic resonance images. Data were analyzed from November 15, 2018, to March 15, 2019. Main Outcomes and Measures: Overall survival. Results: Among the 761 patients included in the development cohort (468 [61.5%] men; median age, 60 [interquartile range, 51.6-67.7] years), younger patients with IDH-wild-type tumors and aggressive resection of CE and NCE tumors had survival similar to that of patients with IDH-mutant tumors (median overall survival [OS], 37.3 [95% CI, 31.6-70.7] months). Younger patients with IDH-wild-type tumors and reduction of CE tumor but residual NCE tumors fared worse (median OS, 16.5 [95% CI, 14.7-18.3] months). Older patients with IDH-wild-type tumors benefited from reduction of CE tumor (median OS, 12.4 [95% CI, 11.4-14.0] months). The results were validated in the 2 external cohorts. The association between aggressive CE and NCE in patients with IDH-wild-type tumors was not attenuated by the methylation status of the promoter region of the DNA repair enzyme O6-methylguanine-DNA methyltransferase. Conclusions and Relevance: This study confirms an association between maximal resection of CE tumor and OS in patients with glioblastoma across all subgroups. In addition, maximal resection of NCE tumor was associated with longer OS in younger patients, regardless of IDH status, and among patients with IDH-wild-type glioblastoma regardless of the methylation status of the promoter region of the DNA repair enzyme O6-methylguanine-DNA methyltransferase. These conclusions may help reassess surgical strategies for individual patients with newly diagnosed glioblastoma.


Subject(s)
Glioblastoma/drug therapy , Glioblastoma/surgery , Isocitrate Dehydrogenase/genetics , Adolescent , Adult , Aged , Antineoplastic Agents, Alkylating/administration & dosage , Biomarkers, Tumor/genetics , Child, Preschool , Cohort Studies , Contrast Media/administration & dosage , DNA Methylation/drug effects , Female , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Isocitrate Dehydrogenase/administration & dosage , Male , Middle Aged , Ohio/epidemiology , Prognosis , Promoter Regions, Genetic/drug effects , Retrospective Studies , Temozolomide/administration & dosage
20.
Neuro Oncol ; 21(11): 1458-1469, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31346613

ABSTRACT

BACKGROUND: Glioblastoma (GBM) represents an aggressive cancer type with a median survival of only 14 months. With fewer than 5% of patients surviving 5 years, comprehensive profiling of these rare patients could elucidate prognostic biomarkers that may confer better patient outcomes. We utilized multiple molecular approaches to characterize the largest patient cohort of isocitrate dehydrogenase (IDH)-wildtype GBM long-term survivors (LTS) to date. METHODS: Retrospective analysis was performed on 49 archived formalin-fixed paraffin embedded tumor specimens from patients diagnosed with GBM at the Mayo Clinic between December 1995 and September 2013. These patient samples were subdivided into 2 groups based on survival (12 LTS, 37 short-term survivors [STS]) and subsequently examined by mutation sequencing, copy number analysis, methylation profiling, and gene expression. RESULTS: Of the 49 patients analyzed in this study, LTS were younger at diagnosis (P = 0.016), more likely to be female (P = 0.048), and MGMT promoter methylated (UniD, P = 0.01). IDH-wildtype STS and LTS demonstrated classic GBM mutations and copy number changes. Pathway analysis of differentially expressed genes showed LTS enrichment for sphingomyelin metabolism, which has been linked to decreased GBM growth, invasion, and angiogenesis. STS were enriched for DNA repair and cell cycle control networks. CONCLUSIONS: While our findings largely report remarkable similarity between these LTS and more typical STS, unique attributes were observed in regard to altered gene expression and pathway enrichment. These attributes may be valuable prognostic markers and are worth further examination. Importantly, this study also underscores the limitations of existing biomarkers and classification methods in predicting patient prognosis.


Subject(s)
Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Glioblastoma/genetics , Isocitrate Dehydrogenase/genetics , Mutation , Survivors/statistics & numerical data , Adult , Aged , Aged, 80 and over , DNA Methylation , Epigenesis, Genetic , Female , Follow-Up Studies , Gene Expression Profiling , Glioblastoma/pathology , Glioblastoma/surgery , Humans , Male , Middle Aged , Prognosis , Retrospective Studies , Survival Rate , Transcriptome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL