Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Biochim Biophys Acta Bioenerg ; 1858(2): 189-195, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27940021

ABSTRACT

The haptophyte Phaeocystis antarctica and the novel Ross Sea dinoflagellate that hosts kleptoplasts derived from P. antarctica (RSD; R.J. Gast et al., 2006, J. Phycol. 42 233-242) were compared for photosynthetic light harvesting and for oxygen evolution activity. Both chloroplasts and kleptoplasts emit chlorophyll a (Chl a) fluorescence peaking at 683nm (F683) at 277K and at 689 (F689) at 77K. Second derivative analysis of the F689 band at 77K revealed two individual contributions centered at 683nm (Fi-683) and at 689 (Fi-689). Using the p-nitrothiophenol (p-NTP) treatment of Kobayashi et al. (Biochim. Biophys. Acta 423 (1976) 80-90) to differentiate between Photosystem (PS) II and I fluorescence emissions, we could identify PS II as the origin of Fi-683 and PS I as the origin of Fi-689. Both emissions could be excited not only by Chl a-selective light (436nm) but also by mycosporine-like amino acids (MAAs)-selective light (345nm). This suggests that a fraction of MAAs must be proximal to Chls a and, therefore, located within the plastids. On the basis of second derivative fluorescence spectra at 77K, of p-NTP resolved fluorescence spectra, as well as of PSII-driven oxygen evolution activities, PS II appears substantially less active (~1/5) in dinoflagellate kleptoplasts than in P. antarctica chloroplasts. We suggest that a diminished role of PS II, a known source of reactive oxygen species, and a diminished dependence on nucleus-encoded light-harvesting proteins, due to supplementary light-harvesting by MAAs, may account for the extraordinary longevity of RSD kleptoplasts.


Subject(s)
Chloroplasts/metabolism , Dinoflagellida/metabolism , Haptophyta/metabolism , Light-Harvesting Protein Complexes/metabolism , Longevity/physiology , Oxygen/metabolism , Photosystem II Protein Complex/metabolism , Amino Acids/metabolism , Antarctic Regions , Chlorophyll/analogs & derivatives , Chlorophyll/metabolism , Chlorophyll A , Fluorescence , Light , Photosynthesis/physiology , Plastids/metabolism
2.
RNA Biol ; 12(1): 101-4, 2015.
Article in English | MEDLINE | ID: mdl-25826417

ABSTRACT

Ars longa, vita brevis -Hippocrates Chloroplasts and mitochondria are genetically semi-autonomous organelles inside the plant cell. These constructions formed after endosymbiosis and keep evolving throughout the history of life. Experimental evidence is provided for active non-coding RNAs (ncRNAs) in these prokaryote-like structures, and a possible functional imprinting on cellular electrophysiology by those RNA entities is described. Furthermore, updated knowledge on RNA metabolism of organellar genomes uncovers novel inter-communication bridges with the nucleus. This class of RNA molecules is considered as a unique ontogeny which transforms their biological role as a genetic rheostat into a synchronous biochemical one that can affect the energetic charge and redox homeostasis inside cells. A hypothesis is proposed where such modulation by non-coding RNAs is integrated with genetic signals regulating gene transfer. The implications of this working hypothesis are discussed, with particular reference to ncRNAs involvement in the organellar and nuclear genomes evolution since their integrity is functionally coupled with redox signals in photosynthetic organisms.


Subject(s)
Energy Metabolism , Evolution, Molecular , Plant Cells/classification , Plant Cells/metabolism , RNA, Untranslated/metabolism , Oxidation-Reduction , Photosynthesis , Signal Transduction
3.
BMC Plant Biol ; 10: 220, 2010 Oct 12.
Article in English | MEDLINE | ID: mdl-20939918

ABSTRACT

BACKGROUND: Expression of exogenous sequences in plants is often suppressed through one of the earliest described RNA silencing pathways, sense post-transcriptional gene silencing (S-PTGS). This type of suppression has made significant contributions to our knowledge of the biology of RNA silencing pathways and has important consequences in plant transgenesis applications. Although significant progress has been made in recent years, factors affecting the stability of transgene expression are still not well understood. It has been shown before that the efficiency of RNA silencing in plants is influenced by various environmental factors. RESULTS: Here we report that a major environmental factor, light intensity, significantly affects the induction and systemic spread of S-PTGS. Moreover, we show that photoadaptation to high or low light intensity conditions differentially affects mRNA levels of major components of the RNA silencing machinery. CONCLUSIONS: Light intensity is one of the previously unknown factors that affect transgene stability at the post-transcriptional level. Our findings demonstrate an example of how environmental conditions could affect RNA silencing.


Subject(s)
Light , Nicotiana/genetics , RNA Interference , Transgenes/radiation effects , Gene Expression Regulation, Plant , Molecular Sequence Data , Plants, Genetically Modified/genetics , Plants, Genetically Modified/radiation effects , RNA, Plant/genetics , Nicotiana/radiation effects
4.
Biochim Biophys Acta ; 1768(9): 2271-9, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17574204

ABSTRACT

The chlorophyll (Chl)-containing membrane protein complexes from the green alga Scenedesmus obliquus have been isolated from the thylakoid membranes by solubilization with dodecyl-beta-maltoside and fractionation using a sucrose density gradient. The Chl-containing protein fractions were characterized by absorption spectroscopy, tricine SDS PAGE, BN-PAGE, and dynamic light scattering (DLS). BN-PAGE showed the presence of seven protein complexes with molecular weights in the range of 68, 118, 157, 320, 494, 828 and 955 kDa, respectively. Furthermore, light scattering reveals the simultaneous presence of particles of different sizes in the 3-4 nm and 6.0-7.5 nm range, respectively. The smaller size is related to the hydrodynamic radius of the trimer Light Harvesting Complex (LHCII), whereas the larger size is associated with the presence of photosystem I and photosystem II reaction centers. Additionally, functional information regarding protein-protein interactions was deconvoluted using coupling 2-D BN-PAGE, MALDI-TOF MS and a detailed mapping of S. obliquus photosynthetic proteome of the solubilized thylakoid membranes is therefore presented.


Subject(s)
Membrane Proteins/chemistry , Membrane Proteins/metabolism , Proteome/chemistry , Proteome/metabolism , Scenedesmus/metabolism , Thylakoids/chemistry , Thylakoids/metabolism , Algal Proteins/chemistry , Algal Proteins/metabolism , Scenedesmus/chemistry
5.
Sci Rep ; 7(1): 13343, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29042649

ABSTRACT

Chloroplast thylakoid membranes contain virtually all components of the energy-converting photosynthetic machinery. Their energized state, driving ATP synthesis, is enabled by the bilayer organization of the membrane. However, their most abundant lipid species is a non-bilayer-forming lipid, monogalactosyl-diacylglycerol; the role of lipid polymorphism in these membranes is poorly understood. Earlier 31P-NMR experiments revealed the coexistence of a bilayer and a non-bilayer, isotropic lipid phase in spinach thylakoids. Packing of lipid molecules, tested by fluorescence spectroscopy of the lipophilic dye, merocyanine-540 (MC540), also displayed heterogeneity. Now, our 31P-NMR experiments on spinach thylakoids uncover the presence of a bilayer and three non-bilayer lipid phases; time-resolved fluorescence spectroscopy of MC540 also reveals the presence of multiple lipidic environments. It is also shown by 31P-NMR that: (i) some lipid phases are sensitive to the osmolarity and ionic strength of the medium, (ii) a lipid phase can be modulated by catalytic hydrogenation of fatty acids and (iii) a marked increase of one of the non-bilayer phases upon lowering the pH of the medium is observed. These data provide additional experimental evidence for the polymorphism of lipid phases in thylakoids and suggest that non-bilayer phases play an active role in the structural dynamics of thylakoid membranes.


Subject(s)
Lipids/chemistry , Magnetic Resonance Spectroscopy , Phosphorus Isotopes , Spectrometry, Fluorescence , Thylakoids/chemistry , Thylakoids/metabolism , Catalysis , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy/methods , Spectrometry, Fluorescence/methods
6.
J Plant Physiol ; 171(2): 48-51, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24331418

ABSTRACT

During the last decade we showed clearly that abiotic stress changes the cellular composition of polyamines, which in turn regulate the photochemical and non-photochemical quenching of the received light energy in the photosynthetic apparatus and that modulate substantially the level of plant tolerance. In the present contribution, we tried to change the bioenergetics of the leaf discs before the exposure to osmotic stress only by exogenously supplied putrescine, in order to enhance quickly the tolerance against the abiotic stress. Tobacco leaf discs treated with polyethylene-glycol reduced their water content about 24% within 1h. This relatively mild osmotic stress increased endogenous putrescine about 83% and decreased maximum photosystem II photochemical efficiency about 14%. In line with this, here we show that treatment with 1mM exogenous putrescine 1h before polyethylene-glycol addition protects the photochemical capacity and inhibits loss of water, confirming the key role of putrescine in the modulation of plant tolerance against osmotic stress. Furthermore, our recent works indicate that putrescine is accumulated in lumen during light reactions and may act as a permeable buffer and an osmolyte.


Subject(s)
Nicotiana/physiology , Osmotic Pressure , Putrescine/physiology , Water/physiology , Adaptation, Physiological , Chlorophyll/metabolism , Polyethylene Glycols
7.
Plant Signal Behav ; 6(8): 1180-2, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21791977

ABSTRACT

Plants have substantially invested in RNA silencing as the central defense mechanism to combat nucleotide 'invaders' such as viruses, trasposable elements and transgenes. The quantity and quality of light perceived by a plant is a constant environmental stimulus refining cell homeostasis and RNA silencing mechanism seems not to be an exception In our recent paper in BMC Plant Biology we documented that light intensity, in physiological ranges, positively affects silencing initiation and spread. (1) Here, we show that virus induced gene silecing under high light conditions results in more frequent systemic silencing events of a transgene and is acompanied by elevated DCL3 and DCL4 mRNA levels. In addition, our results show that DCL3 holds a vital role in systemic silencing spread and the positive effect of light intensity on RNA silencing requires DCL4 function.


Subject(s)
Nicotiana/genetics , Plant Proteins/metabolism , RNA Interference/radiation effects , Ribonuclease III/metabolism , Gene Knockdown Techniques , Light , Plant Proteins/genetics , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/radiation effects , Ribonuclease III/genetics , Nicotiana/enzymology , Nicotiana/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL