Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters

Publication year range
1.
Cytokine ; 164: 156137, 2023 04.
Article in English | MEDLINE | ID: mdl-36773528

ABSTRACT

Host immunity has been suggested to clear drug-resistant parasites in malaria-endemic settings. However, the immunogenetic mechanisms involved in parasite clearance are poorly understood. Characterizing the host's immunity and genes involved in controlling the parasitic infection can inform the development of blood-stage malaria vaccines. This study investigates host regulatory cytokines and immunogenomic factors associated with the clearance of Plasmodium falciparum carrying a chloroquine resistance genotype. Biological samples from participants of previous drug efficacy trials conducted in two Malian localities were retrieved. The P. falciparum chloroquine resistance transporter (Pfcrt) gene was genotyped using parasite DNA. Children carrying parasites with the mutant allele (Pfcrt-76T) were classified based on their ability to clear their parasites. The levels of the different cytokines were measured in serum. The polymorphisms of specific human genes involved in malaria susceptibility were genotyped using human DNA. The prevalence of the Pfcrt-76T was significantly higher in Kolle than in Bandiagara (81.6 % vs 38.6 %, p < 10-6). The prevalence of children who cleared their mutant parasites was significantly higher in Bandiagara than in Kolle (82.2 % vs 67.4 %, p < 0.05). The genotyping of host genes revealed that IFN-γ -874 T and TNF-α -308A alleles were positively associated with parasite clearance. Cytokine profiling revealed that IFN-γ level was positively associated with parasite clearance (p = 0.04). This study highlights the role of host's immunity and immunogenetic factors to clear resistant parasites, suggesting further characterization of these polymorphisms may help to develop novel approaches to antiparasitic treatment strategies.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Humans , Child , Antimalarials/pharmacology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/therapeutic use , Drug Resistance/genetics , Protozoan Proteins/genetics , Chloroquine/pharmacology , Malaria, Falciparum/genetics , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Plasmodium falciparum/genetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/therapeutic use , Malaria/drug therapy
2.
J Infect Dis ; 223(11): 1943-1947, 2021 06 04.
Article in English | MEDLINE | ID: mdl-32992328

ABSTRACT

Circumsporozoite protein (CSP) coats the Plasmodium falciparum sporozoite surface and is a major malaria subunit vaccine target. We measured epitope-specific reactivity to field-derived CSP haplotypes in serum samples from Malian adults and children on a custom peptide microarray. Compared to children, adults showed greater antibody responses and responses to more variants in regions proximal to and within the central repeat region. Children acquired short-lived immunity to an epitope proximal to the central repeat region but not to the central repeat region itself. This approach has the potential to differentiate immunodominant from protective epitope-specific responses when combined with longitudinal infection data.


Subject(s)
Antibodies, Protozoan/immunology , Antibody Formation , Malaria Vaccines , Malaria, Falciparum , Adult , Child , Epitopes , Humans , Malaria Vaccines/immunology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Mali , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Vaccines, Subunit/immunology
3.
Emerg Infect Dis ; 26(5): 945-952, 2020 05.
Article in English | MEDLINE | ID: mdl-32310065

ABSTRACT

The circulation of Zika virus (ZIKV) in Mali has not been clearly characterized. Therefore, we conducted a serologic survey of 793 asymptomatic volunteers >15 years of age (2016), and 637 blood donors (2013) to assess the seroprevalence of ZIKV infection in 2 ecoclimatic regions of Mali, tropical savannah and warm semiarid region, using ELISA and seroneutralization assays. The overall seroprevalence was ≈12% and increased with age, with no statistical difference between male and female participants. In the warm semiarid study sites we detected immunological markers of an outbreak that occurred in the late 1990s in 18% (95% CI 13%-23%) of participants. In tropical savannah sites, we estimated a low rate of endemic transmission, with 2.5% (95% CI 2.0%-3.1%) of population infected by ZIKV annually. These data demonstrate the circulation of ZIKV in Mali and provide evidence of a previously unidentified outbreak that occurred in the late 1990s.


Subject(s)
Zika Virus Infection , Zika Virus , Blood Donors , Female , Humans , Male , Mali/epidemiology , Seroepidemiologic Studies , Zika Virus Infection/epidemiology
4.
Can J Infect Dis Med Microbiol ; 2020: 9340480, 2020.
Article in English | MEDLINE | ID: mdl-33029265

ABSTRACT

Recent evidence suggests that proprotein convertase subtilisin/kexin type 9 (PCSK9), a downmodulator of cellular uptake of blood cholesterol, also negatively impacts host immune response to microbial infection. In this study, we investigated whether carrying the loss-of-function (LOF) rs562556 (c.1420 A > G; p.I474 V) PCSK9 single nucleotide polymorphism (SNP) affected the outcome of severe malaria in children. Archival DNA of a cohort of 207 Malian children suffering from severe malaria was genotyped for the rs562556 SNP. Sixty-four children were either heterozygous or homozygous for the minor G allele (carriers); 143 children were homozygous for the common A allele (noncarriers). Among carriers, there was one mortality case (1.6%), compared to 15 cases (10.5%) among noncarriers (p=0.0251), suggesting that the G allele is associated with better survival in severe malaria. Intriguingly, this allele did not negatively segregate with any of the clinical symptoms linked to mortality in this cohort. Studies are needed to determine whether PCSK9 inactivation promotes a protective immune response to malaria infection.

5.
Emerg Infect Dis ; 25(5): 999-1002, 2019 05.
Article in English | MEDLINE | ID: mdl-31002054

ABSTRACT

We report detection of Lassa virus and Crimean-Congo hemorrhagic fever virus infections in the area of Bamako, the capital of Mali. Our investigation found 2 cases of infection with each of these viruses. These results show the potential for both of these viruses to be endemic to Mali.


Subject(s)
Hemorrhagic Fever Virus, Crimean-Congo , Hemorrhagic Fever, Crimean/epidemiology , Hemorrhagic Fever, Crimean/virology , Lassa Fever/epidemiology , Lassa Fever/virology , Lassa virus , Hemorrhagic Fever Virus, Crimean-Congo/classification , Hemorrhagic Fever Virus, Crimean-Congo/genetics , Humans , Lassa virus/classification , Lassa virus/genetics , Mali/epidemiology , Public Health Surveillance
6.
Malar J ; 18(1): 13, 2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30658710

ABSTRACT

BACKGROUND: A malaria vaccine based on Plasmodium falciparum apical membrane antigen 1 (AMA1) elicited strain specific efficacy in Malian children that waned in the second season after vaccination despite sustained AMA1 antibody titers. With the goal of identifying a humoral correlate of vaccine-induced protection, pre- and post-vaccination sera from children vaccinated with the AMA1 vaccine and from a control group that received a rabies vaccine were tested for AMA1-specific immunoglobulin G (IgG) subclasses (IgG1, IgG2, IgG3, and IgG4) and for antibody avidity. METHODS: Samples from a previously completed Phase 2 AMA1 vaccine trial in children residing in Mali, West Africa were used to determine AMA1-specific IgG subclass antibody titers and avidity by ELISA. Cox proportional hazards models were used to assess correlation between IgG subclass antibody titers and risk of time to first or only clinical malaria episode and risk of multiple episodes. Asexual P. falciparum parasite density measured for each child as area under the curve were used to assess correlation between IgG subclass antibody titers and parasite burden. RESULTS: AMA1 vaccination did not elicit a change in antibody avidity; however, AMA1 vaccinees had a robust IgG subclass response that persisted over the malaria transmission season. AMA1-specific IgG subclass responses were not associated with decreased risk of subsequent clinical malaria. For the AMA1 vaccine group, IgG3 levels at study day 90 correlated with high parasite burden during days 90-240. In the control group, AMA1-specific IgG subclass rise and persistence over the malaria season was modest and correlated with age. In the control group, titers of several IgG subclasses at days 90 and 240 correlated with parasite burden over the first 90 study days, and IgG3 at day 240 correlated with parasite burden during days 90-240. CONCLUSIONS: Neither IgG subclass nor avidity was associated with the modest, strain-specific efficacy elicited by this blood stage malaria vaccine. Although a correlate of protection was not identified, correlations between subclass titers and age, and correlations between IgG subclass titers and parasite burden, defined by area under the curve parasitaemia levels, were observed, which expand knowledge about IgG subclass responses. IgG3, known to have the shortest half-life of the IgG subclasses, might be the most temporally relevant indicator of ongoing malaria exposure when examining antibody responses to AMA1.


Subject(s)
Antibodies, Protozoan/immunology , Antibody Affinity/immunology , Antigens, Protozoan/immunology , Immunoglobulin G/immunology , Malaria Vaccines/immunology , Membrane Proteins/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Antigens, Protozoan/administration & dosage , Child , Child, Preschool , Female , Humans , Infant , Male , Mali , Membrane Proteins/administration & dosage , Protozoan Proteins/administration & dosage
7.
Malar J ; 18(1): 273, 2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31409360

ABSTRACT

BACKGROUND: Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP1) antigens play a critical role in host immune evasion. Serologic responses to these antigens have been associated with protection from clinical malaria, suggesting that antibodies to PfEMP1 antigens may contribute to natural immunity. The first N-terminal constitutive domain in a PfEMP1 is the Duffy binding-like alpha (DBL-α) domain, which contains a 300 to 400 base pair region unique to each particular protein (the DBL-α "tag"). This DBL-α tag has been used as a marker of PfEMP1 diversity and serologic responses in malaria-exposed populations. In this study, using sera from a malaria-endemic region, responses to DBL-α tags were compared to responses to the corresponding entire DBL-α domain (or "parent" domain) coupled with the succeeding cysteine-rich interdomain region (CIDR). METHODS: A protein microarray populated with DBL-α tags, the parent DBL-CIDR head structures, and downstream PfEMP1 protein fragments was probed with sera from Malian children (aged 1 to 6 years) and adults from the control arms of apical membrane antigen 1 (AMA1) vaccine clinical trials before and during a malaria transmission season. Serological responses to the DBL-α tag and the DBL-CIDR head structure were measured and compared in children and adults, and throughout the season. RESULTS: Malian serologic responses to a PfEMP1's DBL-α tag region did not correlate with seasonal malaria exposure, or with responses to the parent DBL-CIDR head structure in either children or adults. Parent DBL-CIDR head structures were better indicators of malaria exposure. CONCLUSIONS: Larger PfEMP1 domains may be better indicators of malaria exposure than short, variable PfEMP1 fragments such as DBL-α tags. PfEMP1 head structures that include conserved sequences appear particularly well suited for study as serologic predictors of malaria exposure.


Subject(s)
Antigens, Protozoan/immunology , Malaria, Falciparum/immunology , Plasmodium falciparum/physiology , Protozoan Proteins/immunology , Adult , Child , Child, Preschool , Conserved Sequence , Humans , Infant , Middle Aged , Protein Structure, Tertiary , Young Adult
8.
BMC Oral Health ; 19(1): 232, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31666044

ABSTRACT

BACKGROUND: The oral cavity of humans is inhabited by several hundreds of bacterial species and other microorganisms such as fungi and archaeal methanogens. Regarding methanogens, data have been obtained from oral cavity samples collected in Europe, America and Asia. There is no study published on the presence of methanogens in the oral cavity in persons living in Africa. The objective of our study was to bring new knowledge on the distribution of oral methanogens in persons living in Mali, Africa. METHODS: A total of 31 patients were included in the study during a 15-day collection period in September. Bacterial investigations consisted in culturing the bacteria in 5% sheep blood-enriched Columbia agar and PolyViteX agar plates. For archaeal research, we used various methods including culture, molecular biology and fluorescent in situ hybridization (FISH). RESULTS: Eight of 31 (26%) oral samples collected in eight patients consulting for stomatology diseases tested positive in polymerase chain-reaction (PCR)-based assays for methanogens including five cases of Methanobrevibacter oralis and one case each of Methanobrevibacter smithii, Methanobrevibacter massiliense and co-infection Methanobrevibacter oralis and Methanobrevibacter massiliense. CONCLUSIONS: In this pilot study, we are reporting here the first characterization of methanogens in the oral cavity in eight patients in Mali. These methanogen species have already been documented in oral specimens collected from individuals in Europe, Asia, North America and Brazil.


Subject(s)
Methanobrevibacter/isolation & purification , Mouth/microbiology , Black People , Humans , In Situ Hybridization, Fluorescence , Mali , Methanobrevibacter/classification , Methanobrevibacter/genetics , Molecular Biology , Pilot Projects , Polymerase Chain Reaction
9.
Malar J ; 15(1): 442, 2016 08 30.
Article in English | MEDLINE | ID: mdl-27577237

ABSTRACT

BACKGROUND: The safety and immunogenicity of PfAMA1, adjuvanted with Alhydrogel(®) was assessed in malaria-experienced Malian adults. The malaria vaccine, PfAMA1-FVO [25-545] is a recombinant protein Pichia pastoris-expressed AMA-1 from Plasmodium falciparum FVO clone adsorbed to Alhydrogel(®), the control vaccine was tetanus toxoid produced from formaldehyde detoxified and purified tetanus toxin. METHODS: A double blind randomized controlled phase 1 study enrolled and followed 40 healthy adults aged 18-55 years in Bandiagara, Mali, West Africa, a rural setting with intense seasonal transmission of P. falciparum malaria. Volunteers were randomized to receive either 50 µg of malaria vaccine or the control vaccine. Three doses of vaccine were given on Days 0, 28 and 56, and participants were followed for 1 year. Solicited symptoms were assessed for seven days and unsolicited symptoms for 28 days after each vaccination. Serious adverse events were assessed throughout the study. The titres of anti-AMA-1 antibodies were measured by ELISA and P. falciparum growth inhibition assays were performed. RESULTS: Commonest local solicited adverse events were the injection site pain and swelling more frequent in the PfAMA1 group. No vaccine related serious adverse events were reported. A significant 3.5-fold increase of anti-AMA-1 IgG antibodies was observed in malaria vaccine recipients four weeks after the third immunization compared to the control group. CONCLUSION: The PfAMA1 showed a good safety profile. Most adverse events reported were of mild to moderate intensity. In addition, the vaccine induced a significant though short-lived increase in the anti-AMA1 IgG titres. Registered on www.clinicaltrials.gov with the number NCT00431808.


Subject(s)
Antigens, Protozoan/immunology , Genetic Vectors , Malaria Vaccines/adverse effects , Malaria Vaccines/immunology , Membrane Proteins/immunology , Pichia/genetics , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adjuvants, Immunologic/administration & dosage , Adolescent , Adult , Aluminum Hydroxide/administration & dosage , Antibodies, Protozoan/blood , Antigens, Protozoan/genetics , Double-Blind Method , Drug-Related Side Effects and Adverse Reactions/epidemiology , Drug-Related Side Effects and Adverse Reactions/pathology , Enzyme-Linked Immunosorbent Assay , Female , Gene Expression , Healthy Volunteers , Humans , Immunoglobulin G/blood , Malaria Vaccines/administration & dosage , Malaria Vaccines/genetics , Male , Mali , Membrane Proteins/genetics , Middle Aged , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Protozoan Proteins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/adverse effects , Vaccines, Subunit/genetics , Vaccines, Subunit/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Young Adult
10.
J Infect Dis ; 212(11): 1778-86, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26019283

ABSTRACT

BACKGROUND: Hemoglobin C trait, like hemoglobin S trait, protects against severe malaria in children, but it is unclear whether hemoglobin C trait also protects against uncomplicated malaria. We hypothesized that Malian children with hemoglobin C trait would have a lower risk of clinical malaria than children with hemoglobin AA. METHODS: Three hundred children aged 0-6 years were enrolled in a cohort study of malaria incidence in Bandiagara, Mali, with continuous passive and monthly active follow-up from June 2009 to June 2010. RESULTS: Compared to hemoglobin AA children (n = 242), hemoglobin AC children (n = 39) had a longer time to first clinical malaria episode (hazard ratio [HR], 0.19; P = .001; 364 median malaria-free days vs 181 days), fewer episodes of clinical malaria, and a lower cumulative parasite burden. Similarly, hemoglobin AS children (n = 14) had a longer time to first clinical malaria episode than hemoglobin AA children (HR, 0.15; P = .015; 364 median malaria-free days vs 181 days), but experienced the most asymptomatic malaria infections of any group. CONCLUSIONS: Both hemoglobin C and S traits exerted a protective effect against clinical malaria episodes, but appeared to do so by mechanisms that differentially affect the response to infecting malaria parasites.


Subject(s)
Genetic Predisposition to Disease/epidemiology , Genetic Predisposition to Disease/genetics , Hemoglobin C/genetics , Malaria, Falciparum/epidemiology , Malaria, Falciparum/genetics , Child , Child, Preschool , Cohort Studies , Female , Hemoglobin, Sickle/genetics , Humans , Incidence , Infant , Infant, Newborn , Male , Mali/epidemiology
11.
Malar J ; 14: 56, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-25653026

ABSTRACT

BACKGROUND: Naturally acquired immunity to clinical malaria is thought to be mainly antibody-mediated, but reports on antigen targets are contradictory. Recognition of multiple antigens may be crucial for protection. In this study, the magnitude of antibody responses and their temporal stability was assessed for a panel of malaria antigens in relation to protection against clinical Plasmodium falciparum malaria. METHODS: Malian children aged two to 14 years were enrolled in a longitudinal study and followed up by passive and active case detection for seven months. Plasma was collected at enrolment and at the beginning, in the middle and after the end of the transmission season. Antibody titres to the P. falciparum-antigens apical membrane protein (AMA)-1, merozoite surface protein (MSP)-119, MSP-3, glutamine-rich protein (GLURP-R0) and circumsporozoite antigen (CSP) were assessed by enzyme-linked immunosorbent assay (ELISA) for 99 children with plasma available at all time points. Parasite carriage was determined by microscopy and nested PCR. RESULTS: Antibody titres to all antigens, except MSP-119, and the number of antigens recognized increased with age. After malaria exposure, antibody titres increased in children that had low titres at baseline, but decreased in those with high baseline responses. No significant differences were found between antibody titers for individual antigens between children remaining symptomatic or asymptomatic after exposure, after adjustment for age. Instead, children remaining asymptomatic following parasite exposure had a broader repertoire of antigen recognition. CONCLUSIONS: The present study provides immune-epidemiological evidence from a limited cohort of Malian children that strong recognition of multiple antigens, rather than antibody titres for individual antigens, is associated with protection from clinical malaria.


Subject(s)
Antibodies, Protozoan/blood , Antigens, Protozoan/immunology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/immunology , Adolescent , Child , Child, Preschool , Humans , Longitudinal Studies , Mali/epidemiology , Seasons
12.
J Trop Pediatr ; 61(2): 139-42, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25604491

ABSTRACT

A longitudinal study was conducted in a low endemic area in northern Tanzania to examine the influence of the α-thalassaemia trait on malaria incidence and antibody responses to malaria apical membrane antigen-1 (AMA-1) and merozoite surface protein1-19 (MSP-119). Out of 394 children genotyped for α-thalassaemia trait, 4.1% (16 of 394) and 30.7% (121 of 394) were homozygous and heterozygous, respectively. During the 1 year follow-up, four incidents of malaria cases were detected without an evident association with α-thalassaemia. Being heterozygous or homozygous for α-thalassaemia was associated with an increased prevalence of antibodies to AMA-1 [odds ratio (OR): 1.83, 95% confidence interval (CI): 1.07-3.12, p = 0.027] and MSP-1 (OR: 2.04, 95% CI: 1.16-3.60, p = 0.013) after adjustment for age and reported bednet use. The observed association between α-thalassaemia and malaria antibody responses may reflect longer-term differences in antigen exposure or differences in antibody acquisition upon exposure in this low endemic setting.


Subject(s)
Antibodies, Protozoan/immunology , Antigens, Protozoan/blood , Malaria/epidemiology , Membrane Proteins/genetics , Merozoite Surface Protein 1/genetics , Protozoan Proteins/genetics , alpha-Thalassemia/genetics , Adolescent , Antigens, Protozoan/genetics , Child , Child, Preschool , Cross-Sectional Studies , Enzyme-Linked Immunosorbent Assay , Female , Follow-Up Studies , Humans , Infant , Longitudinal Studies , Male , Polymerase Chain Reaction , Prevalence , Tanzania/epidemiology , alpha-Thalassemia/epidemiology
13.
N Engl J Med ; 365(11): 1004-13, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21916638

ABSTRACT

BACKGROUND: Blood-stage malaria vaccines are intended to prevent clinical disease. The malaria vaccine FMP2.1/AS02(A), a recombinant protein based on apical membrane antigen 1 (AMA1) from the 3D7 strain of Plasmodium falciparum, has previously been shown to have immunogenicity and acceptable safety in Malian adults and children. METHODS: In a double-blind, randomized trial, we immunized 400 Malian children with either the malaria vaccine or a control (rabies) vaccine and followed them for 6 months. The primary end point was clinical malaria, defined as fever and at least 2500 parasites per cubic millimeter of blood. A secondary end point was clinical malaria caused by parasites with the AMA1 DNA sequence found in the vaccine strain. RESULTS: The cumulative incidence of the primary end point was 48.4% in the malaria-vaccine group and 54.4% in the control group; efficacy against the primary end point was 17.4% (hazard ratio for the primary end point, 0.83; 95% confidence interval [CI], 0.63 to 1.09; P=0.18). Efficacy against the first and subsequent episodes of clinical malaria, as defined on the basis of various parasite-density thresholds, was approximately 20%. Efficacy against clinical malaria caused by parasites with AMA1 corresponding to that of the vaccine strain was 64.3% (hazard ratio, 0.36; 95% CI, 0.08 to 0.86; P=0.03). Local reactions and fever after vaccination were more frequent with the malaria vaccine. CONCLUSIONS: On the basis of the primary end point, the malaria vaccine did not provide significant protection against clinical malaria, but on the basis of secondary results, it may have strain-specific efficacy. If this finding is confirmed, AMA1 might be useful in a multicomponent malaria vaccine. (Funded by the National Institute of Allergy and Infectious Diseases and others; ClinicalTrials.gov number, NCT00460525.).


Subject(s)
Antibodies, Protozoan/blood , Malaria Vaccines , Malaria, Falciparum/prevention & control , Antigens, Protozoan/immunology , Child, Preschool , Double-Blind Method , Female , Humans , Kaplan-Meier Estimate , Malaria Vaccines/adverse effects , Malaria Vaccines/immunology , Malaria, Falciparum/parasitology , Male , Plasmodium falciparum/immunology , Plasmodium falciparum/isolation & purification , Proportional Hazards Models , Rabies Vaccines
14.
Malar J ; 13: 374, 2014 Sep 19.
Article in English | MEDLINE | ID: mdl-25238721

ABSTRACT

BACKGROUND: The recent decline in malaria incidence in many African countries has been attributed to the provision of prompt and effective anti-malarial treatment using artemisinin-based combination therapy (ACT) and to the widespread distribution of long-lasting, insecticide-treated bed nets (LLINs). At a malaria vaccine-testing site in Bandiagara, Mali, ACT was introduced in 2004, and LLINs have been distributed free of charge since 2007 to infants after they complete the Expanded Programme of Immunization (EPI) schedule and to pregnant women receiving antenatal care. These strategies may have an impact on malaria incidence. METHODS: To document malaria incidence, a cohort of 400 children aged 0 to 14 years was followed for three to four years up to July 2013. Monthly cross-sectional surveys were done to measure the prevalence of malaria infection and anaemia. Clinical disease was measured both actively and passively through continuous availability of primary medical care. Measured outcomes included asymptomatic Plasmodium infection, anaemia and clinical malaria episodes. RESULTS: The incidence rate of clinical malaria varied significantly from June 2009 to July 2013 without a clear downward trend. A sharp seasonality in malaria illness incidence was observed with higher clinical malaria incidence rates during the rainy season. Parasite and anaemia point prevalence also showed seasonal variation with much higher prevalence rates during rainy seasons compared to dry seasons. CONCLUSIONS: Despite the scaling up of malaria prevention and treatment, including the widespread use of bed nets, better diagnosis and wider availability of ACT, malaria incidence did not decrease in Bandiagara during the study period.


Subject(s)
Malaria/epidemiology , Adolescent , Anemia/epidemiology , Asymptomatic Diseases/epidemiology , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Incidence , Infant , Infant, Newborn , Longitudinal Studies , Malaria/complications , Male , Mali/epidemiology , Prevalence
15.
J Infect Dis ; 208(9): 1514-9, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-23901079

ABSTRACT

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigens mediate parasite sequestration and host immune evasion. Reactivity to 21 PfEMP1 fragments on a protein microarray was measured in serum samples from Malian children aged 1-6 years and adults. Seroreactivity to PfEMP1 fragments was higher in adults than in children; intracellular conserved fragments were more widely recognized than were extracellular hypervariable fragments. Over a malaria season, children maintained this differential seroreactivity and recognized additional intracellular PfEMP1 fragments. This approach has the potential to identify conserved, seroreactive extracellular PfEMP1 domains critical for protective immunity to malaria.


Subject(s)
Antigens, Protozoan/immunology , Malaria, Falciparum/immunology , Peptide Fragments/immunology , Protozoan Proteins/immunology , Adult , Antibodies, Protozoan/blood , Case-Control Studies , Child , Child, Preschool , Humans , Infant , Malaria, Falciparum/blood , Plasmodium falciparum/immunology , Protein Array Analysis , Protein Structure, Tertiary
16.
Nat Commun ; 15(1): 2021, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448421

ABSTRACT

In Bandiagara, Mali, children experience on average two clinical malaria episodes per year. However, even in the same transmission area, the number of uncomplicated symptomatic infections, and their parasitemia, can vary dramatically among children. We simultaneously characterize host and parasite gene expression profiles from 136 Malian children with symptomatic falciparum malaria and examine differences in the relative proportion of immune cells and parasite stages, as well as in gene expression, associated with infection and or patient characteristics. Parasitemia explains much of the variation in host and parasite gene expression, and infections with higher parasitemia display proportionally more neutrophils and fewer T cells, suggesting parasitemia-dependent neutrophil recruitment and/or T cell extravasation to secondary lymphoid organs. The child's age also strongly correlates with variations in gene expression: Plasmodium falciparum genes associated with age suggest that older children carry more male gametocytes, while variations in host gene expression indicate a stronger innate response in younger children and stronger adaptive response in older children. These analyses highlight the variability in host responses and parasite regulation during P. falciparum symptomatic infections and emphasize the importance of considering the children's age when studying and treating malaria infections.


Subject(s)
Malaria, Falciparum , Malaria , Child , Humans , Male , Adolescent , Parasitemia/genetics , Gene Expression Profiling , Malaria, Falciparum/genetics , Cell Movement
17.
Am J Trop Med Hyg ; 110(4): 741-748, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38412531

ABSTRACT

Despite the numerous articles published on the clinical characteristics and outcomes of COVID-19 with regard to high-income countries, little is known about patients in low- and middle-income countries (LMIC) in this context. The objective of this observational, prospective, hospital-based multicentric study was to describe clinical features and outcomes of laboratory-confirmed COVID-19 patients hospitalized in each of the participating centers in Bangladesh, Guinea, Ivory Coast, Lebanon, Madagascar, and Mali during the first year of the pandemic (March 5, 2020 to May 4, 2021). The study outcome was the clinical severity of COVID-19, defined as hospitalization in intensive care unit or death. Multivariate logistic regression models were performed to identify independent variables associated with disease severity. Overall, 1,096 patients were included. The median age was 49.0 years, ranging from 38.0 in Mali to 63.0 years in Guinea. The overall clinical severity of COVID-19 was 12.3%, ranging from 6.4% in Mali to 18.8% in Guinea. In both groups of patients <60 and ≥60 years old, cardiovascular diseases (adjusted odds ratio [aOR]: 1.99; 95% CI: 1.13-3.50, P = 0.02; aOR: 2.47; 95% CI: 1.33-4.57, P = 0.004) were independently associated with clinical severity, whereas in patients <60 years, diabetes (aOR: 2.13; 95% CI: 1.11-4.10, P = 0.02) was also associated with clinical severity. Our findings suggest that COVID-19-related severity and death in LMICs are mainly driven by older age. However, the presence of chronic diseases can also increase the risk of severity especially in younger patients.


Subject(s)
COVID-19 , Humans , Middle Aged , Developing Countries , Prospective Studies , SARS-CoV-2 , Risk Factors , Hospitalization , Retrospective Studies
18.
Malar J ; 12: 82, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23452561

ABSTRACT

BACKGROUND: Heterogeneous patterns of malaria transmission are thought to be driven by factors including host genetics, distance to mosquito breeding sites, housing construction, and socio-behavioural characteristics. Evaluation of local transmission epidemiology to characterize malaria risk is essential for planning malaria control and elimination programmes. The use of geographical information systems (GIS) techniques has been a major asset to this approach. To assess time and space distribution of malaria disease in Bandiagara, Mali, within a transmission season, data were used from an ongoing malaria incidence study that enrolled 300 participants aged under six years old". METHODS: Children's households were georeferenced using a handheld global position system. Clinical malaria was defined as a positive blood slide for Plasmodium falciparum asexual stages associated with at least one of the following signs: headache, body aches, fever, chills and weakness. Daily rainfall was measured at the local weather station.Landscape features of Bandiagara were obtained from satellite images and field survey. QGIS™ software was used to map malaria cases, affected and non-affected children, and the number of malaria episodes per child in each block of Bandiagara. Clusters of high or low risk were identified under SaTScan(®) software according to a Bernoulli model. RESULTS: From June 2009 to May 2010, 296 clinical malaria cases were recorded. Though clearly temporally related to the rains, Plasmodium falciparum occurrence persisted late in the dry season. Two "hot spots" of malaria transmission also found, notably along the Yamé River, characterized by higher than expected numbers of malaria cases, and high numbers of clinical episodes per child. Conversely, the north-eastern sector of the town had fewer cases despite its proximity to a large body of standing water which was mosquito habitat. CONCLUSION: These results confirm the existence of a marked spatial heterogeneity of malaria transmission in Bandiagara, providing support for implementation of targeted interventions.


Subject(s)
Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Plasmodium falciparum/isolation & purification , Animals , Child , Child, Preschool , Female , Geographic Information Systems , Humans , Infant , Infant, Newborn , Male , Mali/epidemiology , Spatio-Temporal Analysis , Topography, Medical , Weather
19.
Diagnostics (Basel) ; 13(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36766478

ABSTRACT

In Mali, hepatocellular carcinoma (HCC) is the third and sixth most common cancer in men and women, respectively. Mali comprises several distinct climato-ecological zones. Most studies to date have been conducted in the sub-Sahelian zone of southern Mali, including the capital city Bamako. In this part of the country, the main risk factors for HCC are chronic hepatitis B virus (HBV) carriage and dietary exposure to aflatoxins, a well-known hepatocarcinogen. Data are scarce for other ecological zones, but our preliminary data from 721 blood donors in the area of Timbuktu, presented in this study, suggest that chronic HBV carriage is also endemic in the northern Saharan zone of Mali. For further study, 29 healthy HBV chronic carrier volunteers were recruited from the blood transfusion center in Timbuktu. Successful viral genotyping in 20 volunteers revealed HBV genotype E in 13 cases and D in 7 cases, suggesting that this geographical and anthropological transition zone may also represent a transition zone between HBV genotypes that dominate sub-Saharan and northern Africa, respectively. Sequencing of circulating cell-free plasma DNA (cfDNA) from donors did not reveal the presence of the TP53 R249S mutation in these donors, a marker of dietary exposure to aflatoxins in sub-Saharan Africa. These results suggest that the geo-epidemiological distribution of the risk factors for HCC is not uniform across Mali, but is dependent upon climatic, socioeconomic and anthropological factors that might have an impact on patterns of chronic liver disease and cancer.

20.
Front Immunol ; 14: 1156806, 2023.
Article in English | MEDLINE | ID: mdl-37122725

ABSTRACT

Introduction: Detailed analyses of genetic diversity, antigenic variability, protein localization and immunological responses are vital for the prioritization of novel malaria vaccine candidates. Comprehensive approaches to determine the most appropriate antigen variants needed to provide broad protection are challenging and consequently rarely undertaken. Methods: Here, we characterized PF3D7_1136200, which we named Asparagine-Rich Merozoite Antigen (ARMA) based on the analysis of its sequence, localization and immunogenicity. We analyzed IgG and IgM responses against the common variants of ARMA in independent prospective cohort studies in Burkina Faso (N = 228), Kenya (N = 252) and Mali (N = 195) using a custom microarray, Div-KILCHIP. Results: We found a marked population structure between parasites from Africa and Asia. African isolates shared 34 common haplotypes, including a dominant pair although the overall selection pressure was directional (Tajima's D = -2.57; Fu and Li's F = -9.69; P < 0.02). ARMA was localized to the merozoite surface, IgG antibodies induced Fc-mediated degranulation of natural killer cells and strongly inhibited parasite growth in vitro. We found profound serological diversity, but IgG and IgM responses were highly correlated and a hierarchical clustering analysis identified only three major serogroups. Protective IgG and IgM antibodies appeared to target both cross-reactive and distinct epitopes across variants. However, combinations of IgG and IgM antibodies against selected variants were associated with complete protection against clinical episodes of malaria. Discussion: Our systematic strategy exploits genomic data to deduce the handful of antigen variants with the strongest potential to induce broad protection and may be broadly applicable to other complex pathogens for which effective vaccines remain elusive.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Parasites , Animals , Humans , Plasmodium falciparum , Merozoites , Antigens, Protozoan/genetics , Protozoan Proteins , Antigens, Surface , Prospective Studies , Immunoglobulin G , Burkina Faso
SELECTION OF CITATIONS
SEARCH DETAIL