Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Int J Mol Sci ; 25(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39125605

ABSTRACT

We investigated the association between the SDF-1-3' (c801G > A) variant and the development of diabetic macular edema (DME) or proliferative diabetic retinopathy (PDR) in a Hungarian cohort. SDF-1-3' (c801G > A) was genotyped in 103 patients with diabetic retinopathy and 31 age- and sex-matched non-diabetic controls. Central retinal and choroidal thickness was measured by swept-source optical coherence tomography. The distribution of heterozygous and homozygous SDF-1-3' (c801G > A) genotypes was similar in diabetic and control subjects. The SDF-3'(c801AA) genotype was associated with DME (n = 94 eyes, allele distribution p = 0.006, genotype distribution p = 0.01 OR: 2.48, 95% CL: 1.21-5.08) in both univariable and multivariable modelling, independent of duration and type of diabetes, HbA1C, hypertension and microalbuminuria (p = 0.03). DME occurred earlier in patients carrying the SDF-1 (c801A) allele (Kaplan-Meier analysis, log-rank test p = 0.02). A marginally significant association was found between the presence of the SDF-1 (c801A) allele and the development of PDR (n = 89 eyes, p = 0.06). The SDF-1-3' (c801A) allele also showed a correlation with central retinal (p = 0.006) and choroidal (p = 0.08) thickness. SDF-1-3' (c801G > A) is involved in the development of macular complications in DM independent of critical clinical factors, suggesting that SDF-1 may be a future therapeutic target for high-risk patients, especially those carrying the SDF-1 (c801A) allele.


Subject(s)
Chemokine CXCL12 , Diabetic Retinopathy , Humans , Chemokine CXCL12/genetics , Diabetic Retinopathy/genetics , Female , Male , Hungary , Middle Aged , Aged , Alleles , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Genotype , Case-Control Studies , Tomography, Optical Coherence , Macular Edema/genetics
2.
J Clin Med ; 13(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731014

ABSTRACT

This review aims to explore advancements in perioperative ischemic stroke risk estimation for asymptomatic patients with significant carotid artery stenosis, focusing on Circle of Willis (CoW) morphology based on the CTA or MR diagnostic imaging in the current preoperative diagnostic algorithm. Functional transcranial Doppler (fTCD), near-infrared spectroscopy (NIRS), and optical coherence tomography angiography (OCTA) are discussed in the context of evaluating cerebrovascular reserve capacity and collateral vascular systems, particularly the CoW. These non-invasive diagnostic tools provide additional valuable insights into the cerebral perfusion status. They support biomedical modeling as the gold standard for the prediction of the potential impact of carotid artery stenosis on the hemodynamic changes of cerebral perfusion. Intraoperative risk assessment strategies, including selective shunting, are explored with a focus on CoW variations and their implications for perioperative ischemic stroke and cognitive function decline. By synthesizing these insights, this review underscores the potential of non-invasive diagnostic methods to support clinical decision making and improve asymptomatic patient outcomes by reducing the risk of perioperative ischemic neurological events and preventing further cognitive decline.

3.
Geroscience ; 46(5): 5103-5132, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38639833

ABSTRACT

Cerebral microhemorrhages (CMHs, also known as cerebral microbleeds) are a critical but frequently underestimated aspect of cerebral small vessel disease (CSVD), bearing substantial clinical consequences. Detectable through sensitive neuroimaging techniques, CMHs reveal an extensive pathological landscape. They are prevalent in the aging population, with multiple CMHs often being observed in a given individual. CMHs are closely associated with accelerated cognitive decline and are increasingly recognized as key contributors to the pathogenesis of vascular cognitive impairment and dementia (VCID) and Alzheimer's disease (AD). This review paper delves into the hypothesis that atherosclerosis, a prevalent age-related large vessel disease, extends its pathological influence into the cerebral microcirculation, thereby contributing to the development and progression of CSVD, with a specific focus on CMHs. We explore the concept of vascular aging as a continuum, bridging macrovascular pathologies like atherosclerosis with microvascular abnormalities characteristic of CSVD. We posit that the same risk factors precipitating accelerated aging in large vessels (i.e., atherogenesis), primarily through oxidative stress and inflammatory pathways, similarly instigate accelerated microvascular aging. Accelerated microvascular aging leads to increased microvascular fragility, which in turn predisposes to the formation of CMHs. The presence of hypertension and amyloid pathology further intensifies this process. We comprehensively overview the current body of evidence supporting this interconnected vascular hypothesis. Our review includes an examination of epidemiological data, which provides insights into the prevalence and impact of CMHs in the context of atherosclerosis and CSVD. Furthermore, we explore the shared mechanisms between large vessel aging, atherogenesis, microvascular aging, and CSVD, particularly focusing on how these intertwined processes contribute to the genesis of CMHs. By highlighting the role of vascular aging in the pathophysiology of CMHs, this review seeks to enhance the understanding of CSVD and its links to systemic vascular disorders. Our aim is to provide insights that could inform future therapeutic approaches and research directions in the realm of neurovascular health.


Subject(s)
Aging , Cerebral Small Vessel Diseases , Humans , Cerebral Small Vessel Diseases/physiopathology , Cerebral Small Vessel Diseases/pathology , Aging/physiology , Atherosclerosis/physiopathology , Cerebral Hemorrhage/physiopathology , Microcirculation/physiology , Risk Factors , Microvessels/pathology , Microvessels/physiopathology , Aged
SELECTION OF CITATIONS
SEARCH DETAIL