Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
EMBO J ; 41(23): e107257, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36314733

ABSTRACT

Plant immunity is tightly controlled by a complex and dynamic regulatory network, which ensures optimal activation upon detection of potential pathogens. Accordingly, each component of this network is a potential target for manipulation by pathogens. Here, we report that RipAC, a type III-secreted effector from the bacterial pathogen Ralstonia solanacearum, targets the plant E3 ubiquitin ligase PUB4 to inhibit pattern-triggered immunity (PTI). PUB4 plays a positive role in PTI by regulating the homeostasis of the central immune kinase BIK1. Before PAMP perception, PUB4 promotes the degradation of non-activated BIK1, while after PAMP perception, PUB4 contributes to the accumulation of activated BIK1. RipAC leads to BIK1 degradation, which correlates with its PTI-inhibitory activity. RipAC causes a reduction in pathogen-associated molecular pattern (PAMP)-induced PUB4 accumulation and phosphorylation. Our results shed light on the role played by PUB4 in immune regulation, and illustrate an indirect targeting of the immune signalling hub BIK1 by a bacterial effector.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Pathogen-Associated Molecular Pattern Molecules/metabolism , Plant Immunity/genetics , Plant Diseases , Protein Serine-Threonine Kinases/genetics
2.
Plant Cell ; 29(4): 726-745, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28280093

ABSTRACT

Crosstalk between posttranslational modifications, such as ubiquitination and phosphorylation, play key roles in controlling the duration and intensity of signaling events to ensure cellular homeostasis. However, the molecular mechanisms underlying the regulation of negative feedback loops remain poorly understood. Here, we uncover a pathway in Arabidopsis thaliana by which a negative feedback loop involving the E3 ubiquitin ligase PUB22 that dampens the immune response is triggered by MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3), best known for its function in the activation of signaling. PUB22's stability is controlled by MPK3-mediated phosphorylation of residues localized in and adjacent to the E2 docking domain. We show that phosphorylation is critical for stabilization by inhibiting PUB22 oligomerization and, thus, autoubiquitination. The activity switch allows PUB22 to dampen the immune response. This regulatory mechanism also suggests that autoubiquitination, which is inherent to most single unit E3s in vitro, can function as a self-regulatory mechanism in vivo.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Mitogen-Activated Protein Kinase Kinases/genetics , Plant Immunity/genetics , Protein Binding , Signal Transduction/genetics , Signal Transduction/physiology , Ubiquitin-Protein Ligases/genetics , Ubiquitination/genetics , Ubiquitination/physiology
3.
New Phytol ; 217(4): 1749-1763, 2018 03.
Article in English | MEDLINE | ID: mdl-29194629

ABSTRACT

Ubiquitination is mediated by an enzymatic cascade that results in the modification of substrate proteins, redefining their fate. This post-translational modification is involved in most cellular processes, yet its analysis faces manifold obstacles due to its complex and ubiquitous nature. Reconstitution of the ubiquitination cascade in bacterial systems circumvents several of these problems and was shown to faithfully recapitulate the process. Here, we present UbiGate - a synthetic biology toolbox, together with an inducible bacterial expression system - to enable the straightforward reconstitution of the ubiquitination cascades of different organisms in Escherichia coli by 'Golden Gate' cloning. This inclusive toolbox uses a hierarchical modular cloning system to assemble complex DNA molecules encoding the multiple genetic elements of the ubiquitination cascade in a predefined order, to generate polycistronic operons for expression. We demonstrate the efficiency of UbiGate in generating a variety of expression elements to reconstitute autoubiquitination by different E3 ligases and the modification of their substrates, as well as its usefulness for dissecting the process in a time- and cost-effective manner.


Subject(s)
Synthetic Biology/methods , Ubiquitination , Arabidopsis/genetics , Genes, Plant , Genetic Vectors/metabolism , Operon/genetics , Signal Transduction , Substrate Specificity , Ubiquitin/metabolism , Ubiquitinated Proteins/isolation & purification
4.
Methods Mol Biol ; 2379: 155-169, 2022.
Article in English | MEDLINE | ID: mdl-35188661

ABSTRACT

Coexpression of multiple genes of interest (GOIs) is advantageous for many purposes including the elucidation of protein complexes, reconstitution of enzymatic cascades that mediate the biosynthesis of compounds, the study of signaling cascades, or the elucidation of posttranslational modification. Additional advantages of coexpressing proteins is increased solubility and stability of proteins. For this purpose we developed UbiGate, a modular system based on Golden Gate cloning that enables the generation of polycistronic expression cassettes. Their generation is achieved in four simple steps: (1) GOIs are amplified via PCR, (2) and restriction-ligated into level 0 cloning vectors. Next, (3) the GOIs in a level 0 vector are restriction-ligated into a dedicated set of level 1 vectors that define the position of the GOI within the operon. In the last step (4), level 1 vectors are cloned into a modified pET28-GG expression vector. The resulting modules at each step can be reused to generate fusions with different tags in any desired order and orientation, to include up to six different proteins representing a useful tool facilitating the study of plant metabolic and signaling pathways.


Subject(s)
Bacteria , Genetic Vectors , Bacteria/genetics , Cloning, Molecular , Genetic Vectors/genetics , Plasmids , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL