Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 214
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(16): e2218012120, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37040418

ABSTRACT

Powassan virus is an emerging tick-borne virus of concern for public health, but very little is known about its transmission patterns and ecology. Here, we expanded the genomic dataset by sequencing 279 Powassan viruses isolated from Ixodes scapularis ticks from the northeastern United States. Our phylogeographic reconstructions revealed that Powassan virus lineage II was likely introduced or emerged from a relict population in the Northeast between 1940 and 1975. Sequences strongly clustered by sampling location, suggesting a highly focal geographical distribution. Our analyses further indicated that Powassan virus lineage II emerged in the northeastern United States mostly following a south-to-north pattern, with a weighted lineage dispersal velocity of ~3 km/y. Since the emergence in the Northeast, we found an overall increase in the effective population size of Powassan virus lineage II, but with growth stagnating during recent years. The cascading effect of population expansion of white-tailed deer and I. scapularis populations likely facilitated the emergence of Powassan virus in the northeastern United States.


Subject(s)
Deer , Encephalitis Viruses, Tick-Borne , Ixodes , Animals , New England
2.
J Infect Dis ; 228(Suppl 6): S398-S413, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37849402

ABSTRACT

Flaviviruses are a genus within the Flaviviridae family of positive-strand RNA viruses and are transmitted principally through mosquito and tick vectors. These viruses are responsible for hundreds of millions of human infections worldwide per year that result in a range of illnesses from self-limiting febrile syndromes to severe neurotropic and viscerotropic diseases and, in some cases, death. A vaccine against the prototype flavivirus, yellow fever virus, has been deployed for 85 years and is highly effective. While vaccines against some medically important flaviviruses are available, others have proven challenging to develop. The emergence and spread of flaviviruses, including dengue virus and Zika virus, demonstrate their pandemic potential. This review highlights the gaps in knowledge that need to be addressed to allow for the rapid development of vaccines against emerging flaviviruses in the future.


Subject(s)
Flavivirus Infections , Flavivirus , Vaccines , Zika Virus Infection , Zika Virus , Animals , Humans , Flavivirus Infections/prevention & control , Mosquito Vectors , Zika Virus Infection/prevention & control
3.
Emerg Infect Dis ; 29(1): 145-148, 2023 01.
Article in English | MEDLINE | ID: mdl-36573733

ABSTRACT

In July 2019, Bourbon virus RNA was detected in an Amblyomma americanum tick removed from a resident of Long Island, New York, USA. Tick infection and white-tailed deer (Odocoileus virginianus) serosurvey results demonstrate active transmission in New York, especially Suffolk County, emphasizing a need for surveillance anywhere A. americanum ticks are reported.


Subject(s)
Deer , Ticks , Animals , New York/epidemiology , Arachnid Vectors
4.
PLoS Pathog ; 17(7): e1009801, 2021 07.
Article in English | MEDLINE | ID: mdl-34324600

ABSTRACT

Pathogens possess the ability to adapt and survive in some host species but not in others-an ecological trait known as host tropism. Transmitted through ticks and carried mainly by mammals and birds, the Lyme disease (LD) bacterium is a well-suited model to study such tropism. Three main causative agents of LD, Borrelia burgdorferi, B. afzelii, and B. garinii, vary in host ranges through mechanisms eluding characterization. By feeding ticks infected with different Borrelia species, utilizing feeding chambers and live mice and quail, we found species-level differences in bacterial transmission. These differences localize on the tick blood meal, and specifically complement, a defense in vertebrate blood, and a polymorphic bacterial protein, CspA, which inactivates complement by binding to a host complement inhibitor, Factor H (FH). CspA selectively confers bacterial transmission to vertebrates that produce FH capable of allele-specific recognition. CspA is the only member of the Pfam54 gene family to exhibit host-specific FH-binding. Phylogenetic analyses revealed convergent evolution as the driver of such uniqueness, and that FH-binding likely emerged during the last glacial maximum. Our results identify a determinant of host tropism in Lyme disease infection, thus defining an evolutionary mechanism that shapes host-pathogen associations.


Subject(s)
Bacterial Proteins/genetics , Borrelia burgdorferi/growth & development , Lyme Disease/immunology , Lyme Disease/transmission , Viral Tropism/physiology , Animals , Bacterial Proteins/metabolism , Biological Evolution , Borrelia burgdorferi/genetics , Borrelia burgdorferi/immunology , Complement Factor H/metabolism , Host-Pathogen Interactions/physiology , Humans , Immune Evasion/physiology , Mice , Quail , Species Specificity , Ticks
5.
Emerg Infect Dis ; 28(2): 303-313, 2022 02.
Article in English | MEDLINE | ID: mdl-35075998

ABSTRACT

Cache Valley virus (CVV) is a mosquitoborne virus that infects livestock and humans. We report results of surveillance for CVV in New York, USA, during 2000-2016; full-genome analysis of selected CVV isolates from sheep, horse, humans, and mosquitoes from New York and Canada; and phenotypic characterization of selected strains. We calculated infection rates by using the maximum-likelihood estimation method by year, region, month, and mosquito species. The highest maximum-likelihood estimations were for Anopheles spp. mosquitoes. Our phylogenetic analysis identified 2 lineages and found evidence of segment reassortment. Furthermore, our data suggest displacement of CVV lineage 1 by lineage 2 in New York and Canada. Finally, we showed increased vector competence of An. quadrimaculatus mosquitoes for lineage 2 strains of CVV compared with lineage 1 strains.


Subject(s)
Anopheles , Bunyamwera virus , Animals , Bunyamwera virus/genetics , Horses , Mosquito Vectors , New York/epidemiology , Phylogeny , Sheep
6.
Proc Biol Sci ; 289(1969): 20212087, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35193398

ABSTRACT

Predicting pathogen emergence and spillover risk requires understanding the determinants of a pathogens' host range and the traits involved in host competence. While host competence is often considered a fixed species-specific trait, it may be variable if pathogens diversify across hosts. Balancing selection can lead to maintenance of pathogen polymorphisms (multiple-niche-polymorphism; MNP). The causative agent of Lyme disease, Borrelia burgdorferi (Bb), provides a model to study the evolution of host adaptation, as some Bb strains defined by their outer surface protein C (ospC) genotype, are widespread in white-footed mice and others are associated with non-rodent vertebrates (e.g. birds). To identify the mechanisms underlying potential strain × host adaptation, we infected American robins and white-footed mice, with three Bb strains of different ospC genotypes. Bb burdens varied by strain in a host-dependent fashion, and strain persistence in hosts largely corresponded to Bb survival at early infection stages and with transmission to larvae (i.e. fitness). Early survival phenotypes are associated with cell adhesion, complement evasion and/or inflammatory and antibody-mediated removal of Bb, suggesting directional selective pressure for host adaptation and the potential role of MNP in maintaining OspC diversity. Our findings will guide future investigations to inform eco-evolutionary models of host adaptation for microparasites.


Subject(s)
Borrelia burgdorferi Group , Borrelia burgdorferi , Lyme Disease , Animals , Borrelia burgdorferi/genetics , Borrelia burgdorferi Group/genetics , Host Adaptation , Peromyscus , Phenotype
7.
PLoS Pathog ; 16(10): e1008951, 2020 10.
Article in English | MEDLINE | ID: mdl-33052957

ABSTRACT

Both mosquito species-specific differences and virus strain -specific differences impact vector competence. Previous results in our laboratory with individual populations of N. American mosquitoes support studies suggesting Aedes aegypti are more competent than Ae. albopictus for American Zika virus (ZIKV) strains and demonstrate that U.S. Ae. albopictus have higher competence for an ancestral Asian ZIKV strain. A982V, an amino acid substitution in the NS1 gene acquired prior to the American outbreak, has been shown to increase competence in Ae. aegypti. We hypothesized that variability in the NS1 could therefore contribute to species-specific differences and developed a reverse genetics system based on a 2016 ZIKV isolate from Honduras (ZIKV-WTic) to evaluate the phenotypic correlates of individual amino acid substitutions. In addition to A982V, we evaluated G894A, which was acquired during circulation in the Americas. Reversion of 982 and 894 to ancestral residues increased infectivity, transmissibility and viral loads in Ae. albopictus but had no effect on competence or replication in Ae. aegypti. In addition, while host cell-specific differences in NS1 secretion were measured, with significantly higher secretion in mammalian cells relative to mosquito cells, strain-specific differences in secretion were not detected, despite previous reports. These results demonstrate that individual mutations in NS1 can influence competence in a species-specific manner independent of differences in NS1 secretion and further indicate that ancestral NS1 residues confer increased competence in Ae. albopictus. Lastly, experimental infections of Ifnar1-/- mice demonstrated that these NS1 substitutions can influence viral replication in the host and, specifically, that G894A could represent a compensatory change following a fitness loss from A982V with some viral genetic backgrounds. Together these data suggest a possible role for epistatic interactions in ZIKV fitness in invertebrate and vertebrate hosts and demonstrate that strains with increased transmission potential in U.S. Ae. albopictus could emerge.


Subject(s)
Aedes/virology , Host-Pathogen Interactions , Mosquito Vectors/virology , Viral Load , Viral Nonstructural Proteins/genetics , Zika Virus Infection/transmission , Zika Virus Infection/virology , Animals , Chlorocebus aethiops , Female , Mice , Mice, Knockout , Mutation , Receptor, Interferon alpha-beta/physiology , Vero Cells , Viral Nonstructural Proteins/metabolism , Virus Replication , Zika Virus/classification , Zika Virus/genetics
8.
Clin Microbiol Rev ; 33(2)2020 03 18.
Article in English | MEDLINE | ID: mdl-31896541

ABSTRACT

Increases in tick-borne disease prevalence and transmission are important public health issues. Efforts to control these emerging diseases are frustrated by the struggle to control tick populations and to detect and treat infections caused by the pathogens that they transmit. This review covers tick-borne infectious diseases of nonrickettsial bacterial, parasitic, and viral origins. While tick surveillance and tracking inform our understanding of the importance of the spread and ecology of ticks and help identify areas of risk for disease transmission, the vectors are not the focus of this document. Here, we emphasize the most significant pathogens that infect humans as well as the epidemiology, clinical features, diagnosis, and treatment of diseases that they cause. Although detection via molecular or immunological methods has improved, tick-borne diseases continue to remain underdiagnosed, making the scope of the problem difficult to assess. Our current understanding of the incidence of tick-borne diseases is discussed in this review. An awareness of the diseases that can be transmitted by ticks in specific locations is key to detection and selection of appropriate treatment. As tick-transmitted pathogens are discovered and emerge in new geographic regions, our ability to detect, describe, and understand the growing public health threat must also grow to meet the challenge.


Subject(s)
Tick-Borne Diseases/epidemiology , Ticks/microbiology , Ticks/parasitology , Ticks/virology , Animals , Clinical Laboratory Techniques , Humans
9.
BMC Genomics ; 22(1): 396, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34044772

ABSTRACT

BACKGROUND: Transmission of pathogens by vector mosquitoes is intrinsically linked with mosquito's reproductive strategy because anautogenous mosquitoes require vertebrate blood to develop a batch of eggs. Each cycle of egg maturation is tightly linked with the intake of a fresh blood meal for most species. Mosquitoes that acquire pathogens during the first blood feeding can transmit the pathogens to susceptible hosts during subsequent blood feeding and also vertically to the next generation via infected eggs. Large-scale gene-expression changes occur following each blood meal in various tissues, including ovaries. Here we analyzed mosquito ovary transcriptome following a blood meal at three different time points to investigate blood-meal induced changes in gene expression in mosquito ovaries. RESULTS: We collected ovaries from Aedes aegypti that received a sugar meal or a blood meal on days 3, 10 and 20 post blood meal for transcriptome analysis. Over 4000 genes responded differentially following ingestion of a blood meal on day 3, and 660 and 780 genes on days 10 and 20, respectively. Proteins encoded by differentially expressed genes (DEGs) on day 3 include odorant binding proteins (OBPs), defense-specific proteins, and cytochrome P450 detoxification enzymes. In addition, we identified 580 long non-coding RNAs that are differentially expressed at three time points. Gene ontology analysis indicated that genes involved in peptidase activity, oxidoreductase activity, extracellular space, and hydrolase activity, among others were enriched on day 3. Although most of the DEGs returned to the nonsignificant level compared to the sugar-fed mosquito ovaries following oviposition on days 10 and 20, there remained differences in the gene expression pattern in sugar-fed and blood-fed mosquitoes. CONCLUSIONS: Enrichment of OBPs following blood meal ingestion suggests that these genes may have other functions besides being part of the olfactory system. The enrichment of immune-specific genes and cytochrome P450 genes indicates that ovaries become well prepared to protect their germ line from any pathogens that may accompany the blood meal or from environmental contamination during oviposition, and to deal with the detrimental effects of toxic metabolites.


Subject(s)
Aedes , Aedes/genetics , Animals , Female , Gene Expression , Mosquito Vectors/genetics , Ovary , Oviposition
10.
Emerg Infect Dis ; 27(12): 3128-3132, 2021 12.
Article in English | MEDLINE | ID: mdl-34648421

ABSTRACT

During 2018, Heartland virus RNA was detected in an Amblyomma americanum tick removed from a resident of Suffolk County, New York, USA. The person showed seroconversion. Tick surveillance and white-tailed deer (Odocoileus virginianus) serosurveys showed widespread distribution in Suffolk County, emphasizing a need for disease surveillance anywhere A. americanum ticks are established or emerging.


Subject(s)
Deer , Phlebovirus , Ticks , Animals , Humans , New York/epidemiology
11.
J Neurosci ; 39(27): 5393-5403, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31085612

ABSTRACT

Exposure of the developing fetus to Zika virus (ZIKV) results in a set of brain abnormalities described as the congenital Zika syndrome. Although microcephaly is the most obvious outcome, neuropathologies, such as intracranial calcifications and polymicrogyria, can occur in the absence of microcephaly. Moreover, the full impact of exposure on motor, social, and cognitive skills during development remains uncharacterized. We examined the long-term neurobehavioral consequences of neonatal ZIKV exposure in four genetically divergent inbred mouse strains (C57BL/6J, 129S1/SvImJ, FVB/NJ, and DBA/2J). Male and female mice were infected on postnatal day 1, considered comparable with exposure late in the second trimester of humans. We demonstrate strain differences in early susceptibility to the virus and the time course of glial reaction in the brain. These changes were associated with strain- and sex-dependent differences in long-term behavioral abnormalities that include hyperactivity, impulsiveness, and motor incoordination. In addition, the adult brains of susceptible mice exhibited widespread calcifications that may underlie the behavioral deficits observed. Characterization of the neuropathological sequelae of developmental exposure to the Zika virus in different immunocompetent mouse strains provides a foundation for identifying genetic and immune factors that contribute to long-term neurobehavioral consequences in susceptible individuals.SIGNIFICANCE STATEMENT Developmental Zika virus (ZIKV) infection is now known to cause brain abnormalities in infants that do not display microcephaly at birth, and the full impact of these more subtle neuropathologies has yet to be determined. We demonstrate in a mouse model that long-lasting behavioral aberrations occur after developmental ZIKV exposure. We compare four divergent mouse strains and find that the effects of Zika infection differ greatly between strains, in terms of behavioral changes, sex differences, and the intracranial calcifications that develop in the brains of susceptible mice. These findings provide a foundation for identifying susceptibility factors that lead to the development of abnormal behaviors secondary to ZIKV infection early in life.


Subject(s)
Behavior, Animal , Brain/pathology , Brain/virology , Sex Characteristics , Zika Virus Infection/pathology , Zika Virus Infection/psychology , Animals , Animals, Newborn/physiology , Animals, Newborn/virology , Disease Models, Animal , Female , Male , Mice, Inbred C57BL , Mice, Inbred DBA , Microglia/physiology , Microglia/virology , Neuroglia/physiology , Neuroglia/virology , Neurons/pathology , Neurons/virology , Species Specificity
12.
Emerg Infect Dis ; 26(8): 1810-1817, 2020 08.
Article in English | MEDLINE | ID: mdl-32687041

ABSTRACT

Identifying viruses in synanthropic animals is necessary for understanding the origin of many viruses that can infect humans and developing strategies to prevent new zoonotic infections. The white-footed mouse, Peromyscus leucopus, is one of the most abundant rodent species in the northeastern United States. We characterized the serum virome of 978 free-ranging P. leucopus mice caught in Pennsylvania. We identified many new viruses belonging to 26 different virus families. Among these viruses was a highly divergent segmented flavivirus whose genetic relatives were recently identified in ticks, mosquitoes, and vertebrates, including febrile humans. This novel flavi-like segmented virus was found in rodents and shares ≤70% aa identity with known viruses in the highly conserved region of the viral polymerase. Our data will enable researchers to develop molecular reagents to further characterize this virus and its relatives infecting other hosts and to curtail their spread, if necessary.


Subject(s)
Flavivirus Infections , Flavivirus , Animals , Flavivirus/genetics , Flavivirus Infections/epidemiology , Flavivirus Infections/veterinary , Mice , New England , North America/epidemiology , Pennsylvania/epidemiology
13.
J Gen Virol ; 101(4): 410-419, 2020 04.
Article in English | MEDLINE | ID: mdl-32068528

ABSTRACT

The fidelity of flaviviruses is thought to be tightly regulated for optimal fitness within and between hosts. West Nile virus (WNV) high-fidelity (HiFi) mutations V793I and G806R within the RNA-dependent RNA polymerase, and low-fidelity (LoFi) mutation T248I within the methyltransferase, were previously shown to attenuate infectivity and replicative fitness in Culex mosquitoes and Culex tarsalis (CXT) cells but not in mammalian cells. We hypothesized that fidelity alterations would modify adaptation and maintenance in a host-specific manner. To test this hypothesis, wild-type (WT), HiFi (V793I/G806R) and LoFi (T248I) variants were sequentially passaged eight times in avian (PDE) or mosquito cells, or alternately between the two. Initial characterization confirmed that fidelity mutants are attenuated in mosquito, but not avian, cells. Deep sequencing revealed mutations unique to both cell lines and fidelity mutants, including ENV G1378A, a mutation associated with avian cell adaptation. To characterize maintenance and adaptation, viral outputs were monitored throughout passaging and viral fitness was assessed. The results indicate that fidelity mutants can at times recover fitness during mosquito cell passage, but remain attenuated relative to WT. Despite similar initial fitness, LoFi mutants were impaired during sequential passage in avian cells. Conversely, HiFi mutants passaged in avian cells showed increased adaptation, suggesting that increased fidelity may be advantageous in avian hosts. Although some adaptation occurred with individual mutants, the output titres of fidelity mutants were on average lower and were often lost during host switching. These data confirm that arbovirus fidelity is likely fine-tuned to maximize survival in disparate hosts.


Subject(s)
Adaptation, Physiological/genetics , RNA-Dependent RNA Polymerase/genetics , Viral Envelope Proteins/chemistry , West Nile virus/genetics , West Nile virus/metabolism , Animals , Birds/virology , Cell Line , Computational Biology , Culicidae/virology , Ducks/virology , Host Microbial Interactions , Mutation , Quasispecies/genetics , RNA-Dependent RNA Polymerase/metabolism , Serial Passage , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Virus Replication , West Nile virus/growth & development
14.
Cell Microbiol ; 21(2): e12998, 2019 02.
Article in English | MEDLINE | ID: mdl-30571845

ABSTRACT

Lyme disease, caused by the spirochete Borrelia burgdorferi, is the most common vector-borne disease in the United States and Europe. The spirochetes are transmitted from mammalian and avian reservoir hosts to humans via ticks. Following tick bites, spirochetes colonize the host skin and then disseminate haematogenously to various organs, a process that requires this pathogen to evade host complement, an innate immune defence system. CspZ, a spirochete surface protein, facilitates resistance to complement-mediated killing in vitro by binding to the complement regulator, factor H (FH). Low expression levels of CspZ in spirochetes cultivated in vitro or during initiation of infection in vivo have been a major hurdle in delineating the role of this protein in pathogenesis. Here, we show that treatment of B. burgdorferi with human blood induces CspZ production and enhances resistance to complement. By contrast, a cspZ-deficient mutant and a strain that expressed an FH-nonbinding CspZ variant were impaired in their ability to cause bacteraemia and colonize tissues of mice or quail; virulence of these mutants was however restored in complement C3-deficient mice. These novel findings suggest that FH binding to CspZ facilitates B. burgdorferi complement evasion in vivo and promotes systemic infection in vertebrate hosts.


Subject(s)
Bacterial Proteins/metabolism , Borrelia burgdorferi/immunology , Complement C3/immunology , Lyme Disease/immunology , Membrane Proteins/metabolism , Animals , Bacterial Proteins/genetics , Borrelia burgdorferi/pathogenicity , Complement C3/genetics , Complement Factor H/immunology , Complement Factor H/metabolism , Coturnix , Humans , Ixodes/microbiology , Membrane Proteins/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout
15.
Biochemistry ; 58(8): 1155-1166, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30698412

ABSTRACT

Zika virus (ZIKV) is an enveloped RNA virus from the flavivirus family that can cause fetal neural abnormalities in pregnant women. Previously, we established that ZIKV-EP (envelope protein) binds to human placental chondroitin sulfate (CS), suggesting that CS may be a potential host cell surface receptor in ZIKV pathogenesis. In this study, we further characterized the GAG disaccharide composition of other biological tissues (i.e., mosquitoes, fetal brain cells, and eye tissues) in ZIKV pathogenesis to investigate the role of tissue specific GAGs. Heparan sulfate (HS) was the major GAG, and levels of HS-6-sulfo, HS 0S (unsulfated HS), and CS 4S disaccharides were the main differences in the GAG composition of Aedes aegypti and Aedes albopictus mosquitoes. In human fetal neural progenitor and differentiated cells, HS 0S and CS 4S were the main disaccharides. A change in disaccharide composition levels was observed between undifferentiated and differentiated cells. In different regions of the bovine eyes, CS was the major GAG, and the amounts of hyaluronic acid or keratan sulfate varied depending on the region of the eye. Next, we examined heparin (HP) of various structures to investigate their potential in vitro antiviral activity against ZIKV and Dengue virus (DENV) infection in Vero cells. All compounds effectively inhibited DENV replication; however, they surprisingly promoted ZIKV replication. HP of longer chain lengths more strongly promoted activity in ZIKV replication. This study further expands our understanding of role of GAGs in ZIKV pathogenesis and carbohydrate-based antivirals against flaviviral infection.


Subject(s)
Aedes/metabolism , Dengue/drug therapy , Eye/metabolism , Fetus/metabolism , Glycosaminoglycans/metabolism , Heparitin Sulfate/pharmacology , Zika Virus Infection/drug therapy , Aedes/virology , Animals , Antiviral Agents/pharmacology , Cattle , Chlorocebus aethiops , Dengue/metabolism , Dengue/pathology , Dengue/virology , Dengue Virus/pathogenicity , Eye/drug effects , Fetus/drug effects , Glycosaminoglycans/chemistry , Heparitin Sulfate/chemistry , Humans , In Vitro Techniques , Mosquito Vectors/virology , Neural Stem Cells/cytology , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , Vero Cells , Virus Internalization , Virus Replication , Zika Virus/pathogenicity , Zika Virus Infection/metabolism , Zika Virus Infection/pathology , Zika Virus Infection/virology
16.
Emerg Infect Dis ; 25(2): 346-348, 2019 02.
Article in English | MEDLINE | ID: mdl-30666939

ABSTRACT

We assessed the vector competence of Aedes caspius and Aedes albopictus mosquitoes in Spain for the transmission of Zika virus. Whereas Ae. albopictus mosquitoes were a competent vector, Ae. caspius mosquitoes were unable to transmit Zika virus. We also identified high levels of vertical transmission of Zika virus in Ae. albopictus mosquitoes.


Subject(s)
Aedes/virology , Mosquito Vectors/virology , Zika Virus Infection/epidemiology , Zika Virus Infection/transmission , Zika Virus , Animals , Chlorocebus aethiops , Female , Humans , Spain/epidemiology , Vero Cells , Viral Load , Zika Virus/classification , Zika Virus/genetics , Zika Virus Infection/virology
17.
J Virol ; 92(12)2018 06 15.
Article in English | MEDLINE | ID: mdl-29618651

ABSTRACT

Eastern equine encephalitis virus (EEEV) has a high case-fatality rate in horses and humans, and Florida has been hypothesized to be the source of EEEV epidemics for the northeastern United States. To test this hypothesis, we sequenced complete genomes of 433 EEEV strains collected within the United States from 1934 to 2014. Phylogenetic analysis suggested EEEV evolves relatively slowly and that transmission is enzootic in Florida, characterized by higher genetic diversity and long-term local persistence. In contrast, EEEV strains in New York and Massachusetts were characterized by lower genetic diversity, multiple introductions, and shorter local persistence. Our phylogeographic analysis supported a source-sink model in which Florida is the major source of EEEV compared to the other localities sampled. In sum, this study revealed the complex epidemiological dynamics of EEEV in different geographic regions in the United States and provided general insights into the evolution and transmission of other avian mosquito-borne viruses in this region.IMPORTANCE Eastern equine encephalitis virus (EEEV) infections are severe in horses and humans on the east coast of the United States with a >90% mortality rate in horses, an ∼33% mortality rate in humans, and significant brain damage in most human survivors. However, little is known about the evolutionary characteristics of EEEV due to the lack of genome sequences. By generating large collection of publicly available complete genome sequences, this study comprehensively determined the evolution of the virus, described the epidemiological dynamics of EEEV in different states in the United States, and identified Florida as one of the major sources. These results may have important implications for the control and prevention of other mosquito-borne viruses in the Americas.


Subject(s)
Encephalitis Virus, Eastern Equine/classification , Encephalomyelitis, Equine/transmission , Whole Genome Sequencing/methods , Animals , Encephalitis Virus, Eastern Equine/genetics , Encephalomyelitis, Equine/epidemiology , Florida/epidemiology , Genetic Variation , Genome Size , Genome, Viral , High-Throughput Nucleotide Sequencing , Horses , Massachusetts/epidemiology , New York/epidemiology , Phylogeny , Phylogeography
18.
PLoS Pathog ; 13(5): e1006411, 2017 May.
Article in English | MEDLINE | ID: mdl-28542603

ABSTRACT

The flavivirus genome encodes a single polyprotein precursor requiring multiple cleavages by host and viral proteases in order to produce the individual proteins that constitute an infectious virion. Previous studies have revealed that the NS2B cofactor of the viral NS2B-NS3 heterocomplex protease displays a conformational dynamic between active and inactive states. Here, we developed a conformational switch assay based on split luciferase complementation (SLC) to monitor the conformational change of NS2B and to characterize candidate allosteric inhibitors. Binding of an active-site inhibitor to the protease resulted in a conformational change of NS2B and led to significant SLC enhancement. Mutagenesis of key residues at an allosteric site abolished this induced conformational change and SLC enhancement. We also performed a virtual screen of NCI library compounds to identify allosteric inhibitors, followed by in vitro biochemical screening of the resultant candidates. Only three of these compounds, NSC135618, 260594, and 146771, significantly inhibited the protease of Dengue virus 2 (DENV2) in vitro, with IC50 values of 1.8 µM, 11.4 µM, and 4.8 µM, respectively. Among the three compounds, only NSC135618 significantly suppressed the SLC enhancement triggered by binding of active-site inhibitor in a dose-dependent manner, indicating that it inhibits the conformational change of NS2B. Results from virus titer reduction assays revealed that NSC135618 is a broad spectrum flavivirus protease inhibitor, and can significantly reduce titers of DENV2, Zika virus (ZIKV), West Nile virus (WNV), and Yellow fever virus (YFV) on A549 cells in vivo, with EC50 values in low micromolar range. In contrast, the cytotoxicity of NSC135618 is only moderate with CC50 of 48.8 µM on A549 cells. Moreover, NSC135618 inhibited ZIKV in human placental and neural progenitor cells relevant to ZIKV pathogenesis. Results from binding, kinetics, Western blot, mass spectrometry and mutagenesis experiments unambiguously demonstrated an allosteric mechanism for inhibition of the viral protease by NSC135618.


Subject(s)
Enzyme Inhibitors/pharmacology , Flavivirus/drug effects , High-Throughput Screening Assays/methods , Viral Nonstructural Proteins/chemistry , Allosteric Regulation , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemistry , Flavivirus/chemistry , Flavivirus/enzymology , Flavivirus/genetics , Kinetics , Protein Conformation , RNA Helicases/antagonists & inhibitors , RNA Helicases/chemistry , RNA Helicases/genetics , RNA Helicases/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
19.
Clin Sci (Lond) ; 133(7): 859-867, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30902827

ABSTRACT

Zika (ZIKV) and dengue (DENV) virus infections elicit a robust but cross-reactive antibody response against the viral envelope protein, while antibody responses against non-structural proteins (NS) are more virus specific. Building on this premise, we have previously developed a flavivirus multiplex microsphere immunoassay (MIA) for the serologic diagnosis of ZIKV and DENV infections. This assay significantly improved diagnostic accuracy; however, MIA could not differentiate more recent from past infections, which still represents a major diagnostic challenge. Therefore, an immunoglobulin G (IgG) based avidity assay was developed and its diagnostic performance evaluated. Specimens from New York State residents were submitted to the Wadsworth Center New York State Department of Health (NYSDOH) for routine clinical testing by Zika IgM ELISA and plaque reduction neutralization test (PRNT). Using our previously developed flavivirus MIA as a platform, we developed an IgG avidity assay to discriminate recent ZIKV from past DENV infections. Zika IgM positive specimens had an average Zika IgG avidity index of 14.8% (95% CI: 11.0-18.4%), while Zika IgM negative but flavivirus MIA and PRNT positive samples had an average Zika IgG avidity index of 34.9% (95% CI: 31.1-38.7%). Specimens positive for dengue antibodies by flavivirus MIA and PRNT had an average dengue IgG avidity index of 68.7% (95% CI: 62.7-75.0%). The IgG avidity assay accurately distinguished recent ZIKV from past DENV infections in patients who traveled to dengue endemic regions. This assay could be very useful in patients with high risk of Zika complications such as pregnant women and monitoring immune responses in vaccine trials.


Subject(s)
Antibodies, Viral/blood , Antibody Affinity , Dengue Virus/immunology , Dengue/diagnosis , Immunoassay/methods , Immunoglobulin G/blood , Zika Virus Infection/diagnosis , Zika Virus/immunology , Dengue/blood , Dengue/immunology , Diagnosis, Differential , Enzyme-Linked Immunosorbent Assay , Humans , Neutralization Tests , Predictive Value of Tests , Reproducibility of Results , Viral Plaque Assay , Zika Virus Infection/blood , Zika Virus Infection/immunology
20.
J Clin Microbiol ; 56(3)2018 03.
Article in English | MEDLINE | ID: mdl-29263203

ABSTRACT

The recent outbreak of Zika virus (ZIKV) in the Americas has challenged diagnostic laboratory testing strategies. At the Wadsworth Center, ZIKV serological testing was performed for over 10,000 specimens, using a combination of an enzyme-linked immunosorbent assay (ELISA) for IgM antibodies (Abs) to ZIKV, a polyvalent microsphere immunoassay (MIA) to detect Abs broadly reactive with flaviviruses, and a plaque reduction neutralization test (PRNT) for further testing. Overall, 42% of patients showed serological evidence of flavivirus infection (primarily past dengue virus [DENV] infection), while 7% possessed IgM Abs to ZIKV and/or DENV. ZIKV IgM Abs typically arose within 3 to 4 days, with only one instance of duration beyond 100 days after reported symptoms. PRNT analysis of 826 IgM-positive specimens showed 7% positive neutralization to ZIKV alone, 9% to DENV alone, and 85% to both ZIKV and DENV. Thus, the extensive Ab cross-reactivity among flaviviruses significantly reduced the value of performing PRNT analysis, especially when a traditional paired serum algorithm with viral neutralization titering was used. Nevertheless, the finding of a negative ZIKV result by PRNT was invaluable for reassuring both physicians and patients. The MIA detected both IgM and IgG, which enabled us to identify patients who presented without IgM anti-ZIKV Abs but still had ZIKV-specific neutralizing Abs. On the basis of these results, a new algorithm, which included an IgM Ab capture (MAC)-ELISA to detect recent infection, a flavivirus MIA to identify patients no longer producing IgM, and a single-dilution PRNT for ZIKV exclusion and occasional discrimination of ZIKV and DENV, was implemented.


Subject(s)
Serologic Tests/methods , Zika Virus Infection/diagnosis , Zika Virus/immunology , Algorithms , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cross Reactions , Dengue Virus/immunology , Humans , Immunoassay , Immunoglobulin G/blood , Immunoglobulin M/blood , Neutralization Tests , New York , Practice Guidelines as Topic , Serologic Tests/trends , Zika Virus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL