Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bioorg Med Chem ; 23(16): 5144-50, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25797165

ABSTRACT

Given the rise of parasite resistance to all currently used antimalarial drugs, the identification of novel chemotypes with unique mechanisms of action is of paramount importance. Since Plasmodium expresses a number of aspartic proteases necessary for its survival, we have mined antimalarial datasets for drug-like aspartic protease inhibitors. This effort led to the identification of spiropiperidine hydantoins, bearing similarity to known inhibitors of the human aspartic protease ß-secretase (BACE), as new leads for antimalarial drug discovery. Spiropiperidine hydantoins have a dynamic structure-activity relationship profile with positions identified as being tolerant of a variety of substitution patterns as well as a key piperidine N-benzyl phenol pharmacophore. Lead compounds 4e (CWHM-123) and 12k (CWHM-505) are potent antimalarials with IC50 values against Plasmodium falciparum 3D7 of 0.310 µM and 0.099 µM, respectively, and the former features equivalent potency on the chloroquine-resistant Dd2 strain. Remarkably, these compounds do not inhibit human aspartic proteases BACE, cathepsins D and E, or Plasmodium plasmepsins II and IV despite their similarity to known BACE inhibitors. Although the current leads suffer from poor metabolic stability, they do fit into a drug-like chemical property space and provide a new class of potent antimalarial agents for further study.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Hydantoins/chemistry , Hydantoins/pharmacology , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Animals , Antimalarials/metabolism , Antimalarials/pharmacokinetics , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Drug Discovery , Humans , Hydantoins/metabolism , Hydantoins/pharmacokinetics , Malaria, Falciparum/parasitology , Mice , Microsomes, Liver/metabolism , Piperidines/chemistry , Piperidines/metabolism , Piperidines/pharmacokinetics , Piperidines/pharmacology , Plasmodium falciparum/enzymology , Plasmodium falciparum/metabolism , Rats , Spiro Compounds/chemistry , Spiro Compounds/metabolism , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology
2.
ACS Chem Neurosci ; 5(2): 106-14, 2014 Feb 19.
Article in English | MEDLINE | ID: mdl-24304333

ABSTRACT

Chronic opioids induce synaptic plasticity, a major neuronal adaptation. Astrocyte activation in synaptogenesis may play a critical role in opioid tolerance, withdrawal, and dependence. Thrombospondins 1 and 2 (TSP1/2) are astrocyte-secreted matricellular glycoproteins that promote neurite outgrowth as well as dendritic spine and synapse formation, all of which are inhibited by chronic µ opioids. In prior studies, we discovered that the mechanism of TSP1 regulation by µ opioids in astrocytes involves crosstalk between three different classes of receptors, µ opioid receptor, EGFR and TGFßR. Moreover, TGFß1 stimulated TSP1 expression via EGFR and ERK/MAPK activation, indicating that EGFR is a signaling hub for opioid and TGFß1 actions. Using various selective antagonists, and inhibitors, here we compared the mechanisms of chronic opioid regulation of TSP1/2 isoform expression in vivo and in immortalized rat cortical astrocytes. TSP1/2 release from astrocytes was also monitored. Acute and chronic µ opioids, morphine, and the prototypic µ ligand, DAMGO, modulated TSP2 protein levels. TSP2 but not TSP1 protein content was up-regulated by acute (3 h) morphine or DAMGO by an ERK/MAPK dependent mechanism. Paradoxically, TSP2 protein levels were altered neither by TGFß1 nor by astrocytic neurotrophic factors, EGF, CNTF, and BMP4. TSP1/2 immunofluorescence was increased in astrocytes subjected to scratch-wounding, suggesting TSPs may be useful markers for the "reactive" state of these cells and potentially for different types of injury. Previously, we determined that chronic morphine attenuated both neurite outgrowth and synapse formation in cocultures of primary astrocytes and neurons under similar temporal conditions that µ opioids reduced TSP1 protein levels in astrocytes. Here we found that, after the same 8 day treatment, morphine or DAMGO diminished TSP2 protein levels in astrocytes. Therefore, µ opioids may deter synaptogenesis via both TSP1/2 isoforms, but by distinct mechanisms.


Subject(s)
Analgesics, Opioid/pharmacology , Astrocytes/drug effects , Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology , Morphine/pharmacology , Thrombospondin 1/drug effects , Thrombospondins/drug effects , Animals , Astrocytes/metabolism , Bone Morphogenetic Protein 4/pharmacology , Ciliary Neurotrophic Factor/pharmacology , Epidermal Growth Factor/pharmacology , Extracellular Signal-Regulated MAP Kinases/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , Microarray Analysis , Protein Isoforms , RNA, Messenger/metabolism , Rats , Thrombospondin 1/metabolism , Thrombospondins/metabolism , Transforming Growth Factor beta1/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL