Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Nano Lett ; 15(1): 39-44, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25272243

ABSTRACT

1,3-Butadiene (1,3-BD) hydrogenation was performed on 4 nm Pt, Pd, and Rh nanoparticles (NPs) encapsulated in SiO2 shells at 20, 60, and 100 °C. The core-shells were grown around polyvinylpyrrolidone (PVP) coated NPs (Stöber encapsulation) prepared by colloidal synthesis. Sum frequency generation (SFG) vibrational spectroscopy was performed to correlate surface intermediates observed in situ with reaction selectivity. It is shown that calcination is effective in removing PVP, and the SFG signal can be generated from the metal surface. Using SFG, it is possible to compare the surface vibrational spectrum of Pt@SiO2 (1,3-BD is hydrogenated through multiple paths and produces butane, 1-butene, and cis/trans-2-butene) to Pd@SiO2 (1,3-BD favors one path and produces 1-butene and cis/trans-2-butene). In contrast to Pt@SiO2 and Pd@SiO2, SFG and kinetic experiments of Rh@SiO2 show a permanent accumulation of organic material.

2.
Nano Lett ; 14(11): 6727-30, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25337984

ABSTRACT

Pt nanoparticles with controlled size (2, 4, and 6 nm) are synthesized and tested in ethanol oxidation by molecular oxygen at 60 °C to acetaldehyde and carbon dioxide both in the gas and liquid phases. The turnover frequency of the reaction is ∼80 times faster, and the activation energy is ∼5 times higher at the gas-solid interface compared to the liquid-solid interface. The catalytic activity is highly dependent on the size of the Pt nanoparticles; however, the selectivity is not size sensitive. Acetaldehyde is the main product in both media, while twice as much carbon dioxide was observed in the gas phase compared to the liquid phase. Added water boosts the reaction in the liquid phase; however, it acts as an inhibitor in the gas phase. The more water vapor was added, the more carbon dioxide was formed in the gas phase, while the selectivity was not affected by the concentration of the water in the liquid phase. The differences in the reaction kinetics of the solid-gas and solid-liquid interfaces can be attributed to the molecular orientation deviation of the ethanol molecules on the Pt surface in the gas and liquid phases as evidenced by sum frequency generation vibrational spectroscopy.

3.
J Am Chem Soc ; 136(29): 10515-20, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-24992695

ABSTRACT

We synthesize platinum nanoparticles with controlled average sizes of 2, 4, 6, and 8 nm and use them as model catalysts to study isopropanol oxidation to acetone in both the liquid and gas phases at 60 °C. The reaction at the solid/liquid interface is 2 orders of magnitude slower than that at the solid/gas interface, while catalytic activity increases with the size of platinum nanoparticles for both the liquid-phase and gas-phase reactions. The activation energy of the gas-phase reaction decreases with the platinum nanoparticle size and is in general much higher than that of the liquid-phase reaction which is largely insensitive to the size of catalyst nanoparticles. Water substantially promotes isopropanol oxidation in the liquid phase. However, it inhibits the reaction in the gas phase. The kinetic results suggest different mechanisms between the liquid-phase and gas-phase reactions, correlating well with different orientations of IPA species at the solid/liquid interface vs the solid/gas interface as probed by sum frequency generation vibrational spectroscopy under reaction conditions and simulated by computational calculations.

4.
J Phys Chem B ; 118(28): 7993-8001, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-24620717

ABSTRACT

Gas-liquid scattering experiments are used to determine how a soluble, branched surfactant (2-ethylbutanol) controls the entry of gaseous HCl molecules into 60 and 68 wt % D2SO4 at 213 K. Short-chain alcohols spontaneously segregate to the surfaces of these sulfuric acid solutions, which are representative of aerosol droplets in the lower stratosphere. We find that 2-ethylbutanol enhances HCl entry at low surface coverages, most likely because it provides extra interfacial OH groups that aid HCl dissociation. This enhancement disappears at higher coverages as the alkyl chains crowd each other and block access to the acid. The branched alcohol impedes HCl entry more effectively than its unbranched isomer 1-hexanol, implying that the larger 2-ethybutanol footprint on the surface blocks more HCl molecules from reaching the alcohol-acid interface. This behavior contrasts sharply with gas transport through long-chain monolayers, where branching introduces gaps that allow more facile passage. The experiments suggest that short-chain surfactants with extended footprints may impede transport more effectively than their unbranched isomers.

SELECTION OF CITATIONS
SEARCH DETAIL