Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Cells ; 12(1)2022 12 28.
Article in English | MEDLINE | ID: mdl-36611918

ABSTRACT

Previous studies have demonstrated an involvement of chromatin-remodelling SWI/SNF complexes in the development of prostate cancer, suggesting both tumor suppressor and oncogenic activities. SMARCD1/BAF60A, SMARCD2/BAF60B, and SMARCD3/BAF60C are mutually exclusive accessory subunits that confer functional specificity and are components of all known SWI/SNF subtypes. To assess the role of SWI/SNF in prostate tumorigenesis, we studied the functions and functional relations of the SMARCD family members. Performing RNA-seq in LnCAP cells grown in the presence or absence of dihydrotestosterone, we found that the SMARCD proteins are involved in the regulation of numerous hormone-dependent AR-driven genes. Moreover, we demonstrated that all SMARCD proteins can regulate AR-downstream targets in androgen-depleted cells, suggesting an involvement in the progression to castration-resistance. However, our approach also revealed a regulatory role for SMARCD proteins through antagonization of AR-signalling. We further demonstrated that the SMARCD proteins are involved in several important cellular processes such as the maintenance of cellular morphology and cytokinesis. Taken together, our findings suggest that the SMARCD proteins play an important, yet paradoxical, role in prostate carcinogenesis. Our approach also unmasked the complex interplay of paralogue SWI/SNF proteins that must be considered for the development of safe and efficient therapies targeting SWI/SNF.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Humans , Male , Chromatin Assembly and Disassembly/genetics , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Gene Expression Regulation , Prostatic Neoplasms/genetics , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Signal Transduction , Transcription Factors/metabolism
2.
Eur Urol ; 82(3): 261-270, 2022 09.
Article in English | MEDLINE | ID: mdl-35393162

ABSTRACT

BACKGROUND: The heterogeneity of bladder cancers (BCs) is a major challenge for the development of novel therapies. However, given the high rates of recurrence and/or treatment failure, the identification of effective therapeutic strategies is an urgent clinical need. OBJECTIVE: We aimed to establish a model system for drug identification/repurposing in order to identify novel therapies for the treatment of BC. DESIGN, SETTING, AND PARTICIPANTS: A collection of commercially available BC cell lines (n = 32) was comprehensively characterized. A panel of 23 cell lines, representing a broad spectrum of BC, was selected to perform a high-throughput drug screen. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Positive hits were defined as compounds giving >50% inhibition in at least one BC cell line. RESULTS AND LIMITATIONS: Amongst >1700 tested chemical compounds, a total of 471 substances exhibited antineoplastic effects. Clofarabine, an antimetabolite drug used as third-line treatment for childhood acute lymphoblastic leukaemia, was amongst the limited number of drugs with inhibitory effects on cell lines of all intrinsic subtypes. We, thus, reassessed the substance and confirmed its inhibitory effects on commercially available cell lines and patient-derived cell cultures representing various disease stages, intrinsic subtypes, and histologic variants. To verify these effects in vivo, a patient-derived cell xenograft model for urothelial carcinoma (UC) was used. Well-tolerated doses of clofarabine induced complete remission in all treated animals (n = 12) suffering from both early- and late-stage disease. We further took advantage of another patient-derived cell xenograft model originating from the rare disease entity sarcomatoid carcinoma (SaC). Similarly to UC xenograft mice, clofarabine induced subcomplete to complete tumour remissions in all treated animals (n = 8). CONCLUSIONS: The potent effects of clofarabine in vitro and in vivo suggest that our findings may be of high clinical relevance. Clinical trials are needed to assess the value of clofarabine in improving BC patient care. PATIENT SUMMARY: We used commercially available cell lines for the identification of novel drugs for the treatment of bladder cancer. We confirmed the effects of one of these drugs, clofarabine, in patient-derived cell lines and two different mouse models, thereby demonstrating a potential clinical relevance of this substance in bladder cancer treatment.


Subject(s)
Carcinoma, Transitional Cell , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Urinary Bladder Neoplasms , Animals , Clofarabine/therapeutic use , Early Detection of Cancer , Humans , Mice , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Urinary Bladder Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL