Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Foods ; 12(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36765985

ABSTRACT

Kilning is an integral part of malt production; it ensures grain and enzyme preservation. Kilning temperatures can range between 80 and 220 °C, depending on the type of malt that is being produced. Polycyclic aromatic hydrocarbons (PAHs) are prone to appear at higher temperatures and are generally designated as undesirable in food and beverages. Sixteen PAHs are framed in legislation, but there is a lack of scientific data related to PAHs in malt, malt-related foods (bread, cookies) and beverages (whisky, malted non-alcoholic beverages). The aim of this paper was to assess and quantify the occurrence of different PAHs in malts exposed to different kilning temperatures (50-210°) over a variable time frame. The results indicate that some of the PAHs detected at lower temperatures disappear when malt is exposed to high temperatures (>100 °C). Phenanthrene was no longer detected at 100 °C and indeno [1,2,3-cd] pyrene at 130 °C, while fluorene, anthracene and benzo (a) anthracene were not quantified at 170 °C. The results of this research can be implemented in food safety legislation since foods available to children utilize malted flour (bread, cookies, bakery goods, etc.) due to its enzymatic activity or as a colour additive.

2.
Life (Basel) ; 13(11)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38004351

ABSTRACT

Traditional meat products are commonly produced in small family businesses. However, big industries are also involved in the production of this kind of product, especially since a growing number of consumers crave the traditional taste and aromas. The popularization of original and organic products has resulted in a return to traditional production methods. Traditional meat products are produced worldwide. However, in such (domesticated) conditions there is a potential danger for mycotoxin contamination. This review aims to present the sources of mycotoxins in traditional meat products, the most common mycotoxins related to such meat products, and future prospects regarding the suppression of their occurrence. Special attention should be paid to reducing the transfer of mycotoxins via the food chain from animal feed to animals to humans (stable-to-table principle), which is also described in this review. Other sources of mycotoxins (spices, environment, etc.) should also be monitored for mycotoxins in traditional production. The importance of monitoring and regulating mycotoxins in meat products, especially in traditional meat products, is slowly being recognized by the institutions and hopefully, in the future, can deliver legally regulated limits for such products. This is especially important since meat products are available to the general population and can seriously affect human health.

3.
Foods ; 10(1)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445729

ABSTRACT

This paper examines the influence of malting process parameters on the wheat malt quality obtained from the assortment of winter red wheat. For this assortment, previous research established that strongly restrictive and strongly intensive malting processes are not suitable, that is, they do not significantly improve the quality of the obtained wheat malts, and in some segments, they even disturb it. Therefore, modifications were introduced to both procedures, and malting was performed with moderately intensive procedure D and moderately restrictive procedure E. Starting wheat, indicators of micromalting process success, and finished wheat malts were analyzed. The results showed that the moderately restrictive malting process (E) significantly improves not only the values for soluble N for almost all tested varieties, but also the values of cytolytic degradation success (wort viscosity, filtration time), and extract yield. The moderately intensive procedure did not improve the determined indicators; for many varieties, the modification even resulted in poorer values. Furthermore, the moderately restrictive procedure allows a strong individual response of a particular variety to the process conditions during malting, which is very important for the assessment of the malting potential for a particular variety. Namely, when assessing the actual malting quality of an individual variety, it is necessary to include amylolytic indicators and indicators of enzymatic strength. In this way, a group of varieties were established which had an increased initial share of total N (varieties no. 7, 8, 9, 10, 12, 13, and 16). These varieties, by this procedure, gave the best quality wheat malts in the entire examined assortment.

4.
Toxins (Basel) ; 13(2)2021 02 03.
Article in English | MEDLINE | ID: mdl-33546479

ABSTRACT

Mycotoxins are secondary metabolites produced by fungal species that commonly have a toxic effect on human and animal health. Different foodstuff can be contaminated and are considered the major source of human exposure to mycotoxins, but occupational and environmental exposure can also significantly contribute to this problem. This review aims to provide a short overview of the occurrence of toxigenic fungi and regulated mycotoxins in foods and workplaces, following the current literature and data presented in scientific papers. Biomonitoring of mycotoxins in plasma, serum, urine, and blood samples has become a common method for determining the exposure to different mycotoxins. Novel techniques are more and more precise and accurate and are aiming toward the simultaneous determination of multiple mycotoxins in one analysis. Application of liquid chromatography (LC) methodologies, coupled with tandem mass spectrometry (MS/MS) or high-resolution mass spectrometry (HRMS) has become a common and most reliable method for determining the exposure to mycotoxins. Numerous references confirm the importance of mycotoxin biomonitoring to assess the exposure for humans and animals. The objectives of this paper were to review the general approaches to biomonitoring of different mycotoxins and the occurrence of toxigenic fungi and their mycotoxins, using recent literature sources.


Subject(s)
Biological Monitoring , Fungi/metabolism , Mycotoxins/analysis , Animal Feed/microbiology , Body Burden , Chromatography, Liquid , Dietary Exposure , Food Chain , Food Microbiology , Humans , Mycotoxins/adverse effects , Occupational Exposure , Risk Assessment , Tandem Mass Spectrometry
5.
J Fungi (Basel) ; 7(5)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33946920

ABSTRACT

Contamination of crops with phytopathogenic genera such as Fusarium, Aspergillus, Alternaria, and Penicillium usually results in mycotoxins in the stored crops or the final products (bread, beer, etc.). To reduce the damage and suppress the fungal growth, it is common to add antifungal substances during growth in the field or storage. Many of these antifungal substances are also harmful to human health and the reduction of their concentration would be of immense importance to food safety. Many eminent researchers are seeking a way to reduce the use of synthetic antifungal compounds and to implement more eco-friendly and healthier bioweapons against fungal proliferation and mycotoxin synthesis. This paper aims to address the recent advances in the effectiveness of biological antifungal compounds application against the aforementioned fungal genera and their species to enhance the protection of ecological and environmental systems involved in crop growing (water, soil, air) and to reduce fungicide contamination of food derived from these commodities.

6.
Foods ; 10(1)2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33379153

ABSTRACT

This paper examines the influence of the malting process of red hard wheat varieties (which have many characteristics of soft wheat varieties and represent a transitional form between durum and soft wheat). According to the values of total and soluble proteins and viscosity of wort these wheat varieties belong to the second malting quality group. To establish the individual response of each variety and estimate how the chosen varieties respond in groups to different process conditions, sixteen varieties were selected and malted according to the standard procedure (A), restrictive procedure (B), and intense procedure (C). Starting wheat, indicators of micromalting process success, and finished malts were analyzed. It was found that the restrictive procedure (B) gives poor results for the values of proteolysis performance parameters (soluble N, free amino nitrogen (FAN)) with simultaneous disturbance and values of cytolytic degradation (viscosity and filtration time) and extract yield. At the same time, this procedure lacks a stronger individual response of an individual variety to the process conditions during malting (F/C difference and extract yield). The optimal malting process for the specified assortment would include the modification of processes B and C in a way to alleviate the restrictive conditions in process B, or in a way to reduce the intensity of the decomposition in process C.

7.
Toxins (Basel) ; 11(1)2019 01 09.
Article in English | MEDLINE | ID: mdl-30634499

ABSTRACT

Fungi, yeasts, and bacteria are common microorganisms on cereals used in malting and brewing industries. These microorganisms are mostly associated with the safety and quality of malt and beer, but also with the health safety of by-products used in animal nutrition. The real problem is their harmful metabolites-toxins that, due to their thermostable properties, can easily be transferred to malting and brewing by-products. Besides fungal metabolites, other toxins originating from plants can be harmful to animal health. Precise and accurate analytical techniques broadened the spectrum of known toxins originating from microorganisms and plants that can pose a threat to animal health. Multi-(myco)toxin analyses are advanced and useful tools for the assessment of product safety, and legislation should follow up and make some important changes to regulate yet unregulated, but highly occurring, microbial and plant toxins in malting and brewing by-products used for animal feed.


Subject(s)
Edible Grain/chemistry , Fermented Foods/analysis , Food Contamination/analysis , Food Microbiology , Mycotoxins/analysis , Edible Grain/microbiology , Fungi , Waste Management
8.
Microorganisms ; 7(11)2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31698757

ABSTRACT

Climatic changes influence considerably the distribution and occurrence of different secondary metabolites in cereals. The aim of this investigation was to assess the changes in metabolite prevalence observed in six different winter barley varieties over a statistically significant period of three years by linking agro-climatic conditions with metabolite concentrations in chosen samples. The results showed that temperatures and precipitation levels varied during the observed timeframe and that the multi-toxin concentrations followed the trend of changing climatic conditions depending on the variety. All quantified (fungal) metabolites showed significant variations throughout the years and, for some (tryptophol and the cyclic dipeptides cyclo(L-Pro-L-Tyr) and cyclo(L-Pro-L-Val)), an unexpected, but clear connection can be made with temperature changes and precipitation levels during the growing season.

9.
Foods ; 8(10)2019 Oct 11.
Article in English | MEDLINE | ID: mdl-31614530

ABSTRACT

The aim of this study was to assess the impact of steeping water change and Fusarium graminearum contamination level on different multi-toxin types and concentrations in barley malt. Malt samples were subjected to two micromalting regimes-steeping water change and the other with no steeping water change. Malt was contaminated with different F. graminearum contamination levels (0%, 10%, and 20%). The results indicate that malt with higher F. graminearum contamination levels ensured higher concentrations of toxins. Higher fungal metabolite concentrations were determined in samples exposed to freshly-changed steeping water, especially zearalenone and its derivates whose values were three to four times higher than in samples with no water change. Zearalenone-4-sulfate showed four (in 10% contamination) and even thirty times (in 20% contamination) higher concentrations than in samples with no water change. Water change during malting resulted in higher levels of multi-toxins in the final product.

10.
Food Chem ; 254: 115-121, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29548430

ABSTRACT

The aim was to determine the mycotoxin transfer rate into beer during a semi-industrial production process and the effect of fungicide treatment in the field on mycotoxins concentrations in beer. To ensure the usual practical agronomical conditions, sample A was treated with fungicide Prosaro® 250, and sample B was infected with Fusarium culmorum spores, in order to obtain infected malt. Malt was produced using standard procedure and beer was produced in a semi-industrial unit. During fermentation measurement of sugars (maltotriose and maltose), glycerol and ethanol content was performed on a daily basis. Multiple toxins were determined in malt and beer. Deoxynivalenol (DON), its modified plant metabolite DON-3-glucoside (DON-glucoside), brevianamide F, tryptophol, linamarin, lotaustralin, culmorin (CUL), 15-hydroxy-CUL and 5-hydroyx-CUL were detected in all samples. Results indicate that F. culmorum infection did not influence the fermentation process or the alcohol concentration.


Subject(s)
Beer/analysis , Fermentation , Food Contamination/analysis , Mycotoxins/analysis , Triticum/chemistry , Triticum/microbiology , Beer/microbiology , Ethanol/analysis , Fungicides, Industrial/administration & dosage , Fusarium/metabolism , Glucosides/analysis , Nitriles , Spores, Fungal , Trichothecenes/analysis , Triticum/growth & development
11.
Microbiol Res ; 160(4): 353-9, 2005.
Article in English | MEDLINE | ID: mdl-16255139

ABSTRACT

This study investigated infection levels with Fusarium graminearum and Fusarium culmorum in malt barley and wheat in eastern Croatia. The contamination was surveyed over three consecutive crop years (2001-2003) on five locations for barley and three wheat cultivating locations. F. graminearum loads reached levels of potentially serious threat for the commercial production of malting raw materials in both cereals (up to 29.1%). On the other hand, the mean percentage of kernels infected with F. culmorum was low to medium (up to 6.1%). The fungal invasions for years and locations were affected by meteorologic and other environmental factors and the pattern seemed to be consistent with species-specific optimal conditions reported by other authors.


Subject(s)
Food Microbiology , Fusarium/growth & development , Fusarium/isolation & purification , Hordeum/microbiology , Triticum/microbiology , Croatia , Food Contamination , Meteorological Concepts , Seeds/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL