Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
J Am Chem Soc ; 145(2): 851-863, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36603206

ABSTRACT

Resistance of bacterial pathogens against antibiotics is declared by WHO as a major global health threat. As novel antibacterial agents are urgently needed, we re-assessed the broad-spectrum myxobacterial antibiotic myxovalargin and found it to be extremely potent against Mycobacterium tuberculosis. To ensure compound supply for further development, we studied myxovalargin biosynthesis in detail enabling production via fermentation of a native producer. Feeding experiments as well as functional genomics analysis suggested a structural revision, which was eventually corroborated by the development of a concise total synthesis. The ribosome was identified as the molecular target based on resistant mutant sequencing, and a cryo-EM structure revealed that myxovalargin binds within and completely occludes the exit tunnel, consistent with a mode of action to arrest translation during a late stage of translation initiation. These studies open avenues for structure-based scaffold improvement toward development as an antibacterial agent.


Subject(s)
Mycobacterium tuberculosis , Myxococcales , Anti-Bacterial Agents/chemistry , Ribosomes/metabolism , Protein Biosynthesis
2.
J Nat Prod ; 84(2): 268-277, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33449690

ABSTRACT

Recent advances in genome sequencing have unveiled a large discrepancy between the genome-encoded capacity of microorganisms to produce secondary metabolites and the number detected. In this work, a two-platform mass spectrometry analysis for the comprehensive secondary metabolomics characterization of nine myxobacterial strains, focusing on extending the range of detectable secondary metabolites by diversifying analytical methods and cultivation conditions, is presented. Direct infusion measurements of crude extracts on a Fourier transform ion cyclotron resonance mass spectrometer are compared to a time-of-flight device coupled to liquid chromatography measurements. Both methods are successful in detecting known metabolites, whereas statistical analysis of unknowns highlights their complementarity: Strikingly, 82-99% of molecular features detected with one setup were not detectable with the other. Metabolite profile differences from our set of strains grown in liquid culture versus their swarming colonies on agar plates were evaluated. The detection of up to 96% more molecular features when both liquid and plate cultures were analyzed translates into increased chances to identify new secondary metabolites. Discrimination between primary and secondary metabolism in combination with GNPS molecular networking revealed strain Mx3 as particularly promising for the isolation of novel secondary metabolites among the nine strains investigated in this study.


Subject(s)
Biological Products/analysis , Metabolomics , Myxococcales/chemistry , Biological Products/chemistry , Chromatography, Liquid , Mass Spectrometry , Metabolomics/methods , Secondary Metabolism
3.
Anal Chem ; 92(23): 15403-15411, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33171050

ABSTRACT

Supercritical fluid extraction (SFE) is widely used for the isolation of natural products from plants, but its application in efforts to identify structurally and physicochemically often dissimilar microbial natural products is limited to date. In this study, we evaluated the impact of SFE on the extractability of myxobacterial secondary metabolites, aiming to improve the prospects of discovering novel natural products. We investigated the influence of different co-solvents on the extraction efficiency of secondary metabolites from three myxobacterial strains and the antimicrobial activity profiles of the corresponding extracts. For each known secondary metabolite, we found extraction conditions using SFE leading to superior yields in the extracts compared to conventional solvent extraction. Compounds with a logP higher than 3 showed the best extraction efficiency using 20% EtOAc as a co-solvent, whereas compounds with logP values lower than 3 were better extractable using more polar co-solvents such as MeOH. Extracts generated with SFE showed increased antimicrobial activities including the presence of activities not explained by known myxobacterial secondary metabolites, highlighting the advantage of SFE for bioactivity-guided isolation. Moreover, non-targeted metabolomics analysis revealed a group of chlorinated metabolites produced by the well-studied model myxobacterium Myxococcus xanthus DK1622, which were not accessible previously due to their low concentration in conventional extracts. The enriched SF extracts were used for isolation and subsequent structure elucidation of chloroxanthic acid A as the founding member of a novel secondary metabolite family. Our findings encourage the increased utilization of SFE as a part of future screening workflows of microbial natural products.


Subject(s)
Chromatography, Supercritical Fluid/methods , Myxococcales/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Myxococcales/drug effects , Solvents/chemistry , Time Factors
4.
J Ind Microbiol Biotechnol ; 46(3-4): 319-334, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30506464

ABSTRACT

Type III polyketide synthases (PKSs) are comparatively small homodimeric enzymes affording natural products with diverse structures and functions. While type III PKS biosynthetic pathways have been studied thoroughly in plants, their counterparts from bacteria and fungi are to date scarcely characterized. This gap is exemplified by myxobacteria from which no type III PKS-derived small molecule has previously been isolated. In this study, we conducted a genomic survey of myxobacterial type III PKSs and report the identification of uncommon alkylpyrones as the products of type III PKS biosynthesis from the myxobacterial model strain Myxococcus xanthus DK1622 through a self-resistance-guided screening approach focusing on genes encoding pentapetide repeat proteins, proficient to confer resistance to topoisomerase inhibitors. Using promoter-induced gene expression in the native host as well as heterologous expression of biosynthetic type III PKS genes, sufficient amounts of material could be obtained for structural elucidation and bioactivity testing, revealing potent topoisomerase activity in vitro.


Subject(s)
Biological Products/chemistry , Genome, Bacterial , Myxococcales/genetics , Polyketide Synthases/genetics , Acyltransferases , Bacteria/genetics , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biosynthetic Pathways/genetics , Cloning, Molecular , Gene Expression Regulation, Bacterial , Genetic Variation , Multigene Family , Myxococcales/metabolism , Polyketide Synthases/metabolism , Protein Conformation , Sequence Analysis, DNA
5.
Nucleic Acids Res ; 43(W1): W237-43, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25948579

ABSTRACT

Microbial secondary metabolism constitutes a rich source of antibiotics, chemotherapeutics, insecticides and other high-value chemicals. Genome mining of gene clusters that encode the biosynthetic pathways for these metabolites has become a key methodology for novel compound discovery. In 2011, we introduced antiSMASH, a web server and stand-alone tool for the automatic genomic identification and analysis of biosynthetic gene clusters, available at http://antismash.secondarymetabolites.org. Here, we present version 3.0 of antiSMASH, which has undergone major improvements. A full integration of the recently published ClusterFinder algorithm now allows using this probabilistic algorithm to detect putative gene clusters of unknown types. Also, a new dereplication variant of the ClusterBlast module now identifies similarities of identified clusters to any of 1172 clusters with known end products. At the enzyme level, active sites of key biosynthetic enzymes are now pinpointed through a curated pattern-matching procedure and Enzyme Commission numbers are assigned to functionally classify all enzyme-coding genes. Additionally, chemical structure prediction has been improved by incorporating polyketide reduction states. Finally, in order for users to be able to organize and analyze multiple antiSMASH outputs in a private setting, a new XML output module allows offline editing of antiSMASH annotations within the Geneious software.


Subject(s)
Bacteria/genetics , Fungi/genetics , Secondary Metabolism/genetics , Software , Algorithms , Bacteria/metabolism , Biosynthetic Pathways/genetics , Catalytic Domain , Data Mining , Enzymes/chemistry , Fungi/metabolism , Genomics/methods , Internet , Polyketides
6.
Anal Chem ; 88(15): 7556-66, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27398867

ABSTRACT

The determination of the molecular formula is one of the earliest and most important steps when investigating the chemical nature of an unknown compound. Common approaches use the isotopic pattern of a compound measured using mass spectrometry. Computational methods to determine the molecular formula from this isotopic pattern require a fixed set of elements. Considering all possible elements severely increases running times and more importantly the chance for false positive identifications as the number of candidate formulas for a given target mass rises significantly if the constituting elements are not prefiltered. This negative effect grows stronger for compounds of higher molecular mass as the effect of a single atom on the overall isotopic pattern grows smaller. On the other hand, hand-selected restrictions on this set of elements may prevent the identification of the correct molecular formula. Thus, it is a crucial step to determine the set of elements most likely comprising the compound prior to the assignment of an elemental formula to an exact mass. In this paper, we present a method to determine the presence of certain elements (sulfur, chlorine, bromine, boron, and selenium) in the compound from its (high mass accuracy) isotopic pattern. We limit ourselves to biomolecules, in the sense of products from nature or synthetic products with potential bioactivity. The classifiers developed here predict the presence of an element with a very high sensitivity and high specificity. We evaluate classifiers on three real-world data sets with 663 isotope patterns in total: 184 isotope patterns containing sulfur, 187 containing chlorine, 14 containing bromine, one containing boron, one containing selenium. In no case do we make a false negative prediction; for chlorine, bromine, boron, and selenium, we make ten false positive predictions in total. We also demonstrate the impact of our method on the identification of molecular formulas, in particular on the number of considered candidates and running time. The element prediction will be part of the next SIRIUS release, available from https://bio.informatik.uni-jena.de/software/sirius/ .


Subject(s)
Chemical Phenomena , Elements , Isotopes/chemistry , Machine Learning , Algorithms , Datasets as Topic , Mass Spectrometry , Molecular Weight
7.
Nat Prod Rep ; 31(6): 768-83, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24763662

ABSTRACT

Covering: up to the end of 2013 The in-depth analysis of secondary metabolomes of many microbes offers tremendous opportunities for the discovery of novel natural products which often exhibit promising biological activities. However, over the last years the increasing availability of whole-genome information has led to raised expectations, as bioinformatic analysis revealed that traditional strategies to discover novel secondary metabolites apparently have so far only scratched the surface of the real microbial "secondary metabolome landscape". Metabolomics-based approaches using modern mass spectrometry techniques can help to bridge the gap between genome-encoded potential for the production of secondary metabolites and the usually contradictory low numbers of compounds known from a specific producer. In this article recent studies are highlighted in which metabolomics-driven analysis played a crucial role for the discovery of novel secondary metabolites from microbial sources. We also exemplify how the implementation of metabolomics techniques facilitates the structural characterization of novel metabolites and contributes to the in-depth investigation of underlying biosynthetic pathways. Furthermore, the constantly increasing role of secondary metabolomics for the identification of novel natural products in a drug discovery context is discussed.


Subject(s)
Biological Products/chemistry , Metabolomics , Biological Products/analysis , Drug Discovery , Mass Spectrometry/methods , Molecular Structure
8.
Anal Chem ; 86(21): 10780-8, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25280058

ABSTRACT

Tandem mass spectrometry is a widely applied and highly sensitive technique for the discovery and characterization of microbial natural products such as secondary metabolites from myxobacteria. Here, a data mining workflow based on MS/MS precursor lists targeting only signals related to bacterial metabolism is established using LC-MS data of crude extracts from shaking flask fermentations. The devised method is not biased toward specific compound classes or structural features and is capable of increasing the information content of LC-MS/MS analyses by directing fragmentation events to signals of interest. The approach is thus contrary to typical auto-MS(2) setups where precursor ions are usually selected according to signal intensity, which is regarded as a drawback for metabolite discovery applications when samples contain many overlapping signals and the most intense signals do not necessarily represent compounds of interest. In line with this, the method described here achieves improved MS/MS scan coverage for low-abundance precursor ions not captured by auto-MS(2) experiments and thereby facilitates the search for new secondary metabolites in complex biological samples. To underpin the effectiveness of the approach, the identification and structure elucidation of two new myxobacterial secondary metabolite classes is reported.


Subject(s)
Biological Products/chemistry , Chromatography, Liquid/methods , Metabolomics , Tandem Mass Spectrometry/methods
9.
Microbiol Spectr ; 12(3): e0368923, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38298128

ABSTRACT

In the past century, microbial natural products have proven themselves to be substantial and fruitful sources of anti-infectives. In addition to the well-studied Actinobacteria, understudied bacterial taxa like the Gram-negative myxobacteria have increasingly gained attention in the ongoing search for novel and biologically active natural products. In the course of a regional sampling campaign to source novel myxobacteria, we recently uncovered new myxobacterial strains MCy12716 and MCy12733 belonging to the Myxococcaceae clade. Early bioactivity screens of the bacterial extracts revealed the presence of bioactive natural products that were identified as angiolam A and several novel derivatives. Sequencing of the corresponding producer strains allowed the identification of the angiolam biosynthetic gene cluster, which was verified by targeted gene inactivation. Based on bioinformatic analysis of the biosynthetic gene cluster, a concise biosynthesis model was devised to explain angiolam biosynthesis. Importantly, novel angiolam derivatives uncovered in this study named angiolams B, C, and D were found to display promising antiparasitic activities against the malaria pathogen Plasmodium falciparum in the 0.3-0.8 µM range.IMPORTANCEThe COVID-19 pandemic and continuously emerging antimicrobial resistance (AMR) have recently raised awareness about limited treatment options against infectious diseases. However, the shortage of treatment options against protozoal parasitic infections, like malaria, is much more severe, especially for the treatment of so-called neglected tropical diseases. The detection of anti-parasitic bioactivities of angiolams produced by MCy12716 and MCy12733 displays the hidden potential of scarcely studied natural products to have promising biological activities in understudied indications. Furthermore, the improved biological activities of novel angiolam derivatives against Plasmodium falciparum and the evaluation of its biosynthesis display the opportunities of the angiolam scaffold on route to treat protozoal parasitic infections as well as possible ways to increase the production of derivatives with improved bioactivities.


Subject(s)
Biological Products , Malaria, Falciparum , Myxococcales , Humans , Myxococcales/genetics , Antiparasitic Agents/pharmacology , Pandemics , Plasmodium falciparum , Biological Products/pharmacology
10.
Biofabrication ; 15(3)2023 06 06.
Article in English | MEDLINE | ID: mdl-37236174

ABSTRACT

Biofilm-associated infections are causing over half a million deaths each year, raising the requirement for innovative therapeutic approaches. For developing novel therapeutics against bacterial biofilm infections, complexin vitromodels that allow to study drug effects on both pathogens and host cells as well as their interaction under controlled, physiologically relevant conditions appear as highly desirable. Nonetheless, building such models is quite challenging because (1) rapid bacterial growth and release of virulence factors may lead to premature host cell death and (2) maintaining the biofilm status under suitable co-culture requires a highly controlled environment. To approach that problem, we chose 3D bioprinting. However, printing living bacterial biofilms in defined shapes on human cell models, requires bioinks with very specific properties. Hence, this work aims to develop a 3D bioprinting biofilm method to build robustin vitroinfection models. Based on rheology, printability and bacterial growth, a bioink containing 3% gelatin and 1% alginate in Luria-Bertani-medium was found optimal forEscherichia coliMG1655 biofilms. Biofilm properties were maintained after printing, as shown visually via microscopy techniques as well as in antibiotic susceptibility assays. Metabolic profile analysis of bioprinted biofilms showed high similarity to native biofilms. After printing on human bronchial epithelial cells (Calu-3), the shape of printed biofilms was maintained even after dissolution of non-crosslinked bioink, while no cytotoxicity was observed over 24 h. Therefore, the approach presented here may provide a platform for building complexin vitroinfection models comprising bacterial biofilms and human host cells.


Subject(s)
Bioprinting , Humans , Bioprinting/methods , Printing, Three-Dimensional , Hydrogels , Biofilms , Bacteria , Epithelial Cells , Tissue Scaffolds , Tissue Engineering/methods
11.
J Med Chem ; 66(23): 16330-16341, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38093695

ABSTRACT

Biosynthetic engineering of bicyclic darobactins, selectively sealing the lateral gate of the outer membrane protein BamA, leads to active analogues, which are up to 128-fold more potent against Gram-negative pathogens compared to native counterparts. Because of their excellent antibacterial activity, darobactins represent one of the most promising new antibiotic classes of the past decades. Here, we present a series of structure-driven biosynthetic modifications of our current frontrunner, darobactin 22 (D22), to investigate modifications at the understudied positions 2, 4, and 5 for their impact on bioactivity. Novel darobactins were found to be highly active against critical pathogens from the WHO priority list. Antibacterial activity data were corroborated by dissociation constants with BamA. The most active derivatives D22 and D69 were subjected to ADMET profiling, showing promising features. We further evaluated D22 and D69 for bioactivity against multidrug-resistant clinical isolates and found them to have strong activity.


Subject(s)
Anti-Bacterial Agents , Phenylpropionates , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
13.
Microorganisms ; 10(3)2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35336107

ABSTRACT

Vitamin K is an essential, lipid soluble vitamin that plays an important role in the human blood coagulation cascade as well as in the life cycle of bacteria and plants. In this study, we report the isolation and structure elucidation of unprecedented polyhydroxylated menaquinone variants named myxoquinones that are produced by myxobacteria and structurally belong to the Vitamin K family. We analyze the occurrence of myxoquinones across an LC-MS data collection from myxobacterial extracts and shed light on the distribution of myxoquinone-type biosynthetic gene clusters among publicly available myxobacterial genomes. Our findings indicate that myxoquinones are specifically produced by strains of the Cystobacterineae suborder within myxobacteria. Furthermore, bioinformatic analysis of the matching gene clusters allowed us to propose a biosynthetic model for myxoquinone formation. Due to their increased water-solubility, the myxoquinones could be a suitable starting point for the development of a better bioavailable treatment of vitamin K deficiency.

14.
Nat Microbiol ; 7(5): 726-735, 2022 05.
Article in English | MEDLINE | ID: mdl-35505244

ABSTRACT

Bacterial specialized metabolites are a proven source of antibiotics and cancer therapies, but whether we have sampled all the secondary metabolite chemical diversity of cultivated bacteria is not known. We analysed ~170,000 bacterial genomes and ~47,000 metagenome assembled genomes (MAGs) using a modified BiG-SLiCE and the new clust-o-matic algorithm. We estimate that only 3% of the natural products potentially encoded in bacterial genomes have been experimentally characterized. We show that the variation in secondary metabolite biosynthetic diversity drops significantly at the genus level, identifying it as an appropriate taxonomic rank for comparison. Equal comparison of genera based on relative evolutionary distance revealed that Streptomyces bacteria encode the largest biosynthetic diversity by far, with Amycolatopsis, Kutzneria and Micromonospora also encoding substantial diversity. Finally, we find that several less-well-studied taxa, such as Weeksellaceae (Bacteroidota), Myxococcaceae (Myxococcota), Pleurocapsa and Nostocaceae (Cyanobacteria), have potential to produce highly diverse sets of secondary metabolites that warrant further investigation.


Subject(s)
Cyanobacteria , Streptomyces , Genome, Bacterial/genetics , Phylogeny , Secondary Metabolism/genetics
15.
ACS Infect Dis ; 8(1): 137-149, 2022 01 14.
Article in English | MEDLINE | ID: mdl-34919390

ABSTRACT

As an alternative to technically demanding and ethically debatable animal models, the use of organotypic and disease-relevant human cell culture models may improve the throughput, speed, and success rate for the translation of novel anti-infectives into the clinic. Besides bacterial killing, host cell viability and barrier function appear as relevant but seldomly measured readouts. Moreover, bacterial virulence factors and signaling molecules are typically not addressed in current cell culture models. Here, we describe a reproducible protocol for cultivating barrier-forming human bronchial epithelial cell monolayers on Transwell inserts and infecting them with microclusters of pre-grown mature Pseudomonas aeruginosa PAO1 biofilms under the air-liquid interface conditions. Bacterial growth and quorum sensing molecules were determined upon tobramycin treatment. The host cell response was simultaneously assessed through cell viability, epithelial barrier function, and cytokine release. By repeated deposition of aerosolized tobramycin after 1, 24, and 48 h, bacterial growth was controlled (reduction from 10 to 4 log10 CFU/mL), which leads to epithelial cell survival for up to 72 h. E-cadherin's cell-cell adhesion protein expression was preserved with the consecutive treatment, and quorum sensing molecules were reduced. However, the bacteria could not be eradicated and epithelial barrier function was impaired, similar to the currently observed situation in the clinic in lack of more efficient anti-infective therapies. Such a human-based in vitro approach has the potential for the preclinical development of novel anti-infectives and nanoscale delivery systems for oral inhalation.


Subject(s)
Pseudomonas aeruginosa , Tobramycin , Anti-Bacterial Agents/pharmacology , Biofilms , Epithelial Cells , Humans , Tobramycin/pharmacology
16.
J Biol Chem ; 284(42): 28590-8, 2009 Oct 16.
Article in English | MEDLINE | ID: mdl-19696019

ABSTRACT

Myxobacteria, especially members of the genus Sorangium, are known for their biotechnological potential as producers of pharmaceutically valuable secondary metabolites. The biosynthesis of several of those myxobacterial compounds includes cytochrome P450 activity. Although class I cytochrome P450 enzymes occur wide-spread in bacteria and rely on ferredoxins and ferredoxin reductases as essential electron mediators, the study of these proteins is often neglected. Therefore, we decided to search in the Sorangium cellulosum So ce56 genome for putative interaction partners of cytochromes P450. In this work we report the investigation of eight myxobacterial ferredoxins and two ferredoxin reductases with respect to their activity in cytochrome P450 systems. Intriguingly, we found not only one, but two ferredoxins whose ability to sustain an endogenous So ce56 cytochrome P450 was demonstrated by CYP260A1-dependent conversion of nootkatone. Moreover, we could demonstrate that the two ferredoxins were able to receive electrons from both ferredoxin reductases. These findings indicate that S. cellulosum can alternate between different electron transport pathways to sustain cytochrome P450 activity.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Genome, Bacterial , Myxococcales/genetics , Biotechnology/methods , Computational Biology/methods , Electron Spin Resonance Spectroscopy , Electrons , Ferredoxins/chemistry , Ferricyanides/chemistry , Flavins/chemistry , Gene Expression Regulation, Bacterial , Genetic Techniques , Glutathione Transferase/metabolism , Kinetics , Protein Structure, Tertiary
17.
Mol Microbiol ; 74(2): 497-517, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19788540

ABSTRACT

Cell differentiation is widespread during the development of multicellular organisms, but rarely observed in prokaryotes. One example of prokaryotic differentiation is the gram-negative bacterium Myxococcus xanthus. In response to starvation, this gliding bacterium initiates a complex developmental programme that results in the formation of spore-filled fruiting bodies. How the cells metabolically support the necessary complex cellular differentiation from rod-shaped vegetative cells into spherical spores is unknown. Here, we present evidence that intracellular lipid bodies provide the necessary metabolic fuel for the development of spores. Formed at the onset of starvation, these lipid bodies gradually disappear until they are completely used up by the time the cells have become mature spores. Moreover, it appears that lipid body formation in M. xanthus is an important initial step indicating cell fate during differentiation. Upon starvation, two subpopulations of cells occur: cells that form lipid bodies invariably develop into spores, while cells that do not form lipid bodies end up becoming peripheral rods, which are cells that lack signs of morphological differentiation and stay in a vegetative-like state. These data indicate that lipid bodies not only fuel cellular differentiation but that their formation represents the first known morphological sign indicating cell fate during differentiation.


Subject(s)
Lipid Metabolism , Myxococcus xanthus/ultrastructure , Spores, Bacterial/ultrastructure , Lipids/isolation & purification , Microscopy, Electron , Mutation , Myxococcus xanthus/genetics , Myxococcus xanthus/growth & development , Myxococcus xanthus/metabolism , Proteome , Spores, Bacterial/genetics , Spores, Bacterial/growth & development , Spores, Bacterial/metabolism , Stress, Physiological
18.
Nat Biotechnol ; 25(11): 1281-9, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17965706

ABSTRACT

The genus Sorangium synthesizes approximately half of the secondary metabolites isolated from myxobacteria, including the anti-cancer metabolite epothilone. We report the complete genome sequence of the model Sorangium strain S. cellulosum So ce56, which produces several natural products and has morphological and physiological properties typical of the genus. The circular genome, comprising 13,033,779 base pairs, is the largest bacterial genome sequenced to date. No global synteny with the genome of Myxococcus xanthus is apparent, revealing an unanticipated level of divergence between these myxobacteria. A large percentage of the genome is devoted to regulation, particularly post-translational phosphorylation, which probably supports the strain's complex, social lifestyle. This regulatory network includes the highest number of eukaryotic protein kinase-like kinases discovered in any organism. Seventeen secondary metabolite loci are encoded in the genome, as well as many enzymes with potential utility in industry.


Subject(s)
Genome, Bacterial/genetics , Myxococcales/genetics , Myxococcales/metabolism , Base Sequence , Biotechnology , Molecular Sequence Data , Myxococcales/classification , Phylogeny , Sequence Analysis, DNA
19.
Nat Rev Chem ; 4(4): 172-193, 2020 Apr.
Article in English | MEDLINE | ID: mdl-37128046

ABSTRACT

Next to plants, bacteria account for most of the biomass on Earth. They are found everywhere, although certain species thrive only in specific ecological niches. These microorganisms biosynthesize a plethora of both primary and secondary metabolites, defined, respectively, as those required for the growth and maintenance of cellular functions and those not required for survival but offering a selective advantage for the producer under certain conditions. As a result, bacterial fermentation has long been used to manufacture valuable natural products of nutritional, agrochemical and pharmaceutical interest. The interactions of secondary metabolites with their biological targets have been optimized by millions of years of evolution and they are, thus, considered to be privileged chemical structures, not only for drug discovery. During the last two decades, functional genomics has allowed for an in-depth understanding of the underlying biosynthetic logic of secondary metabolites. This has, in turn, paved the way for the unprecedented use of bacteria as programmable biochemical workhorses. In this Review, we discuss the multifaceted use of bacteria as biological factories in diverse applications and highlight recent advances in targeted genetic engineering of bacteria for the production of valuable bioactive compounds. Emphasis is on current advances to access nature's abundance of natural products.

20.
ACS Chem Biol ; 15(8): 2221-2231, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32639716

ABSTRACT

Cittilins are secondary metabolites from myxobacteria comprised of three l-tyrosines and one l-isoleucine forming a bicyclic tetrapeptide scaffold with biaryl and aryl-oxygen-aryl ether bonds. Here we reveal that cittilins belong to the ribosomally synthesized and post-translationally modified peptide (RiPP) family of natural products, for which only the crocagins have been reported from myxobacteria. A 27 amino acid precursor peptide harbors a C-terminal four amino acid core peptide, which is enzymatically modified and finally exported to yield cittilins. The small biosynthetic gene cluster responsible for cittilin biosynthesis also encodes a cytochrome P450 enzyme and a methyltransferase, whereas a gene encoding a prolyl endopeptidase for the cleavage of the precursor peptide is located outside of the cittilin biosynthetic gene cluster. We confirm the roles of the biosynthetic genes responsible for the formation of cittilins using targeted gene inactivation and heterologous expression in Streptomyces ssp. We also report first steps toward the biochemical characterization of the proposed biosynthetic pathway in vitro. An investigation of the cellular uptake properties of cittilin A connected it to a potential biological function as an inhibitor of the prokaryotic carbon storage regulator A (CsrA).


Subject(s)
Bacterial Proteins/biosynthesis , Myxococcus xanthus/metabolism , Peptides/metabolism , Ribosomes/metabolism , Bacterial Proteins/metabolism , Biosynthetic Pathways/genetics , Cytochrome P-450 Enzyme System/metabolism , Peptides/chemistry , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL