Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Genes Dev ; 31(20): 2085-2098, 2017 10 15.
Article in English | MEDLINE | ID: mdl-29138277

ABSTRACT

Expression of the transcription factors OCT4, SOX2, KLF4, and cMYC (OSKM) reprograms somatic cells into induced pluripotent stem cells (iPSCs). Reprogramming is a slow and inefficient process, suggesting the presence of safeguarding mechanisms that counteract cell fate conversion. One such mechanism is senescence. To identify modulators of reprogramming-induced senescence, we performed a genome-wide shRNA screen in primary human fibroblasts expressing OSKM. In the screen, we identified novel mediators of OSKM-induced senescence and validated previously implicated genes such as CDKN1A We developed an innovative approach that integrates single-cell RNA sequencing (scRNA-seq) with the shRNA screen to investigate the mechanism of action of the identified candidates. Our data unveiled regulation of senescence as a novel way by which mechanistic target of rapamycin (mTOR) influences reprogramming. On one hand, mTOR inhibition blunts the induction of cyclin-dependent kinase (CDK) inhibitors (CDKIs), including p16INK4a, p21CIP1, and p15INK4b, preventing OSKM-induced senescence. On the other hand, inhibition of mTOR blunts the senescence-associated secretory phenotype (SASP), which itself favors reprogramming. These contrasting actions contribute to explain the complex effect that mTOR has on reprogramming. Overall, our study highlights the advantage of combining functional screens with scRNA-seq to accelerate the discovery of pathways controlling complex phenotypes.


Subject(s)
Cellular Reprogramming , Cellular Senescence , Gene Expression Profiling , RNA, Small Interfering , Sequence Analysis, RNA , TOR Serine-Threonine Kinases/physiology , Transcription Factors/metabolism , Animals , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Humans , Kruppel-Like Factor 4 , Mice , Single-Cell Analysis , TOR Serine-Threonine Kinases/antagonists & inhibitors
2.
Clin Genet ; 102(2): 117-122, 2022 08.
Article in English | MEDLINE | ID: mdl-35470444

ABSTRACT

BRD4 is part of a multiprotein complex involved in loading the cohesin complex onto DNA, a fundamental process required for cohesin-mediated loop extrusion and formation of Topologically Associating Domains. Pathogenic variations in this complex have been associated with a growing number of syndromes, collectively known as cohesinopathies, the most classic being Cornelia de Lange syndrome. However, no cohort study has been conducted to delineate the clinical and molecular spectrum of BRD4-related disorder. We formed an international collaborative study, and collected 14 new patients, including two fetuses. We performed phenotype and genotype analysis, integrated prenatal findings from fetopathological examinations, phenotypes of pediatric patients and adults. We report the first cohort of patients with BRD4-related disorder and delineate the dysmorphic features at different ages. This work extends the phenotypic spectrum of cohesinopathies and characterize a new clinically relevant and recognizable pattern, distinguishable from the other cohesinopathies.


Subject(s)
De Lange Syndrome , Nuclear Proteins , Cell Cycle Proteins/genetics , Child , De Lange Syndrome/diagnosis , De Lange Syndrome/genetics , De Lange Syndrome/pathology , Female , Genomics , Humans , Mutation , Nuclear Proteins/genetics , Phenotype , Pregnancy , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL