Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
J Surg Res ; 273: 201-210, 2022 05.
Article in English | MEDLINE | ID: mdl-35093836

ABSTRACT

INTRODUCTION: The Management of Myelomeningocele Study demonstrated that in utero repair of myelomeningocele improved motor outcomes compared with postnatal repair. However, even after in utero repair, many children were still unable to walk. We have previously demonstrated that augmentation of in utero repair with early-gestation placental mesenchymal stromal cells (PMSCs) improves motor outcomes in lambs compared with standard in utero repair. The neuroprotective potential of PMSCs of all gestational ages has not been evaluated previously. METHODS: PMSCs were isolated from discarded first trimester (n = 3), second trimester (n = 3), and term (n = 3) placentas by explant culture. Cytokine array analysis was performed. Secretion of two neurotrophic factors, brain-derived neurotrophic factor and hepatocyte growth factor, was evaluated by enzyme-linked immunosorbent assay. An in vitro neuroprotective assay demonstrated to be associated with in vivo function was performed. RESULTS: All cell lines secreted immunomodulatory and neuroprotective cytokines and secreted the neurotrophic factors evaluated. Increased neuroprotective capabilities relative to no PMSCs were demonstrated in two of the three first trimester cell lines (5.61, 4.96-6.85, P < 0.0001 and 2.67, 1.67-4.12, P = 0.0046), two of the three second trimester cell lines (2.82, 2.45-3.43, P = 0.0004 and 3.25, 2.62-3.93, P < 0.0001), and two of the three term cell lines (2.72, 2.32-2.92, P = 0.0033 and 2.57, 1.41-4.42, P = 0.0055). CONCLUSIONS: We demonstrated variation in neuroprotective function between cell lines and found that some cell lines from each trimester had neuroprotective properties. This potentially expands the donor pool of PMSCs for clinical use. Further in-depth studies are needed to understand potential subtle differences in cell function at different gestational ages.


Subject(s)
Meningomyelocele , Mesenchymal Stem Cells , Animals , Cytokines/metabolism , Female , Gestational Age , Mesenchymal Stem Cells/metabolism , Nerve Growth Factors/metabolism , Placenta , Pregnancy , Sheep
2.
J Surg Res ; 267: 660-668, 2021 11.
Article in English | MEDLINE | ID: mdl-34273796

ABSTRACT

BACKGROUND: Myelomeningocele (MMC) is the congenital failure of neural tube closure in utero, for which the standard of care is prenatal surgical repair. We developed clinical-grade placental mesenchymal stromal cells seeded on a dural extracellular matrix (PMSC-ECM), which have been shown to improve motor outcomes in preclinical ovine models. To evaluate the long-term safety of this product prior to use in a clinical trial, we conducted safety testing in a murine model. METHODS: Clinical grade PMSCs obtained from donor human placentas were seeded onto a 6 mm diameter ECM at a density of 3 × 105 cells/cm2. Immunodeficient mice were randomized to receive either an ECM only or PMSC-ECM administered into a subcutaneous pocket. Mice were monitored for tumor formation until two study endpoints: 4 wk and 6 mo. Pathology and histology on all tissues was performed to evaluate for tumors. Quantitative polymerase chain reaction (qPCR) was performed to evaluate for the presence of human DNA, which would indicate persistence of PMSCs. RESULTS: Fifty-four mice were included; 13 received ECM only and 14 received PMSC-ECM in both the 4-wk and 6-mo groups. No mice had gross or microscopic evidence of tumor development. A nodular focus of mature fibrous connective tissue was identified at the subcutaneous implantation pocket in the majority of mice with no significant difference between ECM only and PMSC-ECM groups (P = 0.32 at 4 wk, P > 0.99 at 6 mo). Additionally, no human DNA was detected by qPCR in any mice at either time point. CONCLUSIONS: Subcutaneous implantation of the PMSC-ECM product did not result in tumor formation and we found no evidence that PMSCs persisted. These results support the safety of the PMSC-ECM product for use in a Phase 1/2a human clinical trial evaluating fetal MMC repair augmented with PMSC-ECM.


Subject(s)
Meningomyelocele , Mesenchymal Stem Cells , Animals , Extracellular Matrix/pathology , Female , Fetus/surgery , Meningomyelocele/surgery , Mice , Placenta , Pregnancy
3.
Fetal Diagn Ther ; 48(6): 472-478, 2021.
Article in English | MEDLINE | ID: mdl-34111873

ABSTRACT

BACKGROUND: The inherent morbidity associated with fetal ovine models of myelomeningocele (MMC) has created challenges for long-term survival of lambs. We aimed to develop a fetal ovine surgical spinal exposure model which could be used to evaluate long-term safety after direct spinal cord application of novel therapeutics for augmentation of in utero MMC repair. METHODS: At gestational age (GA) 100-106, fetal lambs underwent surgical intervention. Laminectomy of L5-L6 was performed, dura was removed, and an experimental product was directly applied to the spinal cord. Paraspinal muscles and skin were closed and the fetus was returned to the uterus. Lambs were delivered via cesarean section at GA 140-142. Lambs were survived for 3 months with regular evaluation of motor function by the sheep locomotor rating scale. Spinal angulation was evaluated by magnetic resonance imaging at 2 weeks and 3 months. RESULTS: Five fetal surgical intervention lambs and 6 control lambs who did not undergo surgical intervention were included. All lambs survived to the study endpoint of 3 months. No lambs had motor function abnormalities or increased spinal angulation. CONCLUSION: This model allows for long-term survival after fetal spinal cord exposure with product application directly onto the spinal cord.


Subject(s)
Cesarean Section , Meningomyelocele , Animals , Disease Models, Animal , Female , Fetus , Meningomyelocele/diagnostic imaging , Meningomyelocele/surgery , Pregnancy , Sheep , Spinal Cord/diagnostic imaging
4.
FASEB J ; 33(5): 5836-5849, 2019 05.
Article in English | MEDLINE | ID: mdl-30753093

ABSTRACT

We have established early-gestation chorionic villus-derived placenta mesenchymal stromal cells (PMSCs) as a potential treatment for spina bifida (SB), a neural tube defect. Our preclinical studies demonstrated that PMSCs have the potential to cure hind limb paralysis in the fetal lamb model of SB via a paracrine mechanism. PMSCs exhibit neuroprotective function by increasing cell number and neurites, as shown by indirect coculture and direct addition of PMSC-conditioned medium to the staurosporine-induced apoptotic human neuroblastoma cell line, SH-SY5Y. PMSC-conditioned medium suppressed caspase activity in apoptotic SH-SY5Y cells, suggesting that PMSC secretome contributes to neuronal survival after injury. As a part of PMSC secretome, PMSC exosomes were isolated and extensively characterized; their addition to apoptotic SH-SY5Y cells mediated an increase in neurites, suggesting that they exhibit neuroprotective function. Proteomic and RNA sequencing analysis revealed that PMSC exosomes contain several proteins and RNAs involved in neuronal survival and development. Galectin 1 was highly expressed on the surface of PMSCs and PMSC exosomes. Preincubation of exosomes with anti-galectin 1 antibody decreased their neuroprotective effect, suggesting that PMSC exosomes likely impart their effect via binding of galectin 1 to cells. Future studies will include in-depth analyses of the role of PMSC exosomes on neuroprotection and their clinical applications.-Kumar, P., Becker, J. C., Gao, K., Carney, R. P., Lankford, L., Keller, B. A., Herout, K., Lam, K. S., Farmer, D. L., Wang, A. Neuroprotective effect of placenta-derived mesenchymal stromal cells: role of exosomes.


Subject(s)
Mesenchymal Stem Cells/cytology , Placenta/cytology , Spinal Dysraphism/therapy , Stromal Cells/cytology , Animals , Apoptosis , Cattle , Cell Line, Tumor , Coculture Techniques , Culture Media, Conditioned/chemistry , Exosomes/metabolism , Female , Galectin 1/physiology , Humans , Mesenchymal Stem Cell Transplantation , Mesoderm/cytology , Neural Tube Defects/therapy , Neurites/metabolism , Oxidative Stress , Pregnancy , Sheep , Signal Transduction , Staurosporine
5.
Fetal Diagn Ther ; 47(12): 912-917, 2020.
Article in English | MEDLINE | ID: mdl-33166951

ABSTRACT

BACKGROUND: Fetal repair of myelomeningocele (MMC) with placental mesenchymal stromal cells (PMSCs) rescues ambulation in the ovine model up to 48 h postnatally. Outcomes past 48 h are unknown as MMC lambs have not been survived past this timepoint. OBJECTIVE: We aimed to survive lambs for 6 months following the fetal repair of MMC with PMSCs. METHODS: Fetal MMC lambs were repaired with PMSCs. Lambs received either no additional treatment or postnatal bracing and physical therapy (B/PT). Motor function was assessed with the sheep locomotor rating (SLR). Lambs with an SLR of 15 at birth were survived for 6 months or until a decline in SLR less than 15, whichever came first. All lambs underwent a perimortem MRI. RESULTS: The lambs with no postnatal treatment (n = 2) had SLR declines to 7 and 13 at 29 and 65 days, respectively, and were euthanized. These lambs had a spinal angulation of 57° and 47°, respectively. The B/PT lamb (n = 1) survived for 6 months with a sustained SLR of 15 and a lumbar angulation of 42°. CONCLUSION: Postnatal physical therapy and bracing counteracted the inherent morbidity of the absent paraspinal muscles in the ovine MMC model allowing for survival and maintenance of rescued motor function of the prenatally treated lamb up to 6 months.


Subject(s)
Meningomyelocele , Mesenchymal Stem Cells , Animals , Female , Fetus , Meningomyelocele/surgery , Pilot Projects , Placenta/diagnostic imaging , Pregnancy , Sheep
6.
Fetal Diagn Ther ; 46(6): 376-384, 2019.
Article in English | MEDLINE | ID: mdl-30970373

ABSTRACT

INTRODUCTION: The surgically induced fetal lamb model is the most commonly used large animal model of myelomeningocele (MMC) but is subject to variation due to surgical technique during defect creation. MATERIAL AND METHODS: Thirty-one fetal lambs underwent creation of the MMC defect, followed by defect repair with either an extracellular matrix (ECM) patch (n = 10) or ECM seeded with placental mesenchymal stromal cells (n = 21). Postnatal hindlimb function was assessed using the Sheep Locomotor Rating (SLR) scale. Postmortem magnetic resonance imaging of the lumbar spine was used to measure the level and degree of spinal angulation, as well as cross-sectional area of remaining vertebral bone. RESULTS: Median level of angulation was between the 2nd and 3rd lumbar vertebrae, with a median angle of 24.3 degrees (interquartile range 16.2-35.3). There was a negative correlation between angulation degree and SLR (r = -0.44, p = 0.013). Degree of angulation also negatively correlated with the normalized cross-sectional area of remaining vertebral bone (r = -0.75, p < 0.0001). DISCUSSION: Surgical creation of fetal MMC leads to varying severity of spinal angulation in the ovine model, which affects postnatal functional outcomes. Postnatal assessment of spinal angulation aids in standardization of the surgical model of fetal MMC repair.


Subject(s)
Hindlimb/innervation , Lumbar Vertebrae/surgery , Meningomyelocele/surgery , Mesenchymal Stem Cell Transplantation , Animals , Disease Models, Animal , Female , Gestational Age , Humans , Locomotion , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/physiopathology , Magnetic Resonance Imaging , Meningomyelocele/diagnostic imaging , Meningomyelocele/etiology , Meningomyelocele/physiopathology , Mesenchymal Stem Cell Transplantation/adverse effects , Placenta/cytology , Predictive Value of Tests , Pregnancy , Prenatal Diagnosis , Sheep, Domestic
7.
Cytometry A ; 93(1): 82-92, 2018 01.
Article in English | MEDLINE | ID: mdl-28715613

ABSTRACT

Spinal cord injury (SCI) is a devastating disorder that affects humans and dogs. The prognosis of SCI depends on the severity of the injury and can include varying levels of motor and sensory deficits including devastating paraplegia and quadriplegia. Placental mesenchymal stromal cells (PMSCs) have been shown to improve wound healing and possess neuroprotective and immunomodulatory capabilities, but have not yet been clinically tested for the treatment of SCI. This study established a protocol to isolate fetal PMSCs from canine placentas and characterized their paracrine secretion profile and ability to stimulate neurons in vitro to assess their potential as a treatment option for neurological disorders in dogs. Canine PMSCs (cPMSCs) were plastic adherent and capable of trilineage differentiation. cPMSCs expressed typical MSC markers and did not express hematopoietic or endothelial cell markers. Genotyping of cPMSCs revealed fetal rather than maternal origin of the cells. cPMSCs were viable and mitotically expansive in a collagen hydrogel delivery vehicle, and they secreted the immunomodulatory and neurotrophic paracrine factors interleukin (IL)-6, IL-8, monocyte chemoattractant protein 1 (MCP-1), and vascular endothelial growth factor (VEGF). cPMSCs also stimulated the growth of complex neural networks when co-cultured with SH-SY5Y cells, a neuroblastoma cell line used to model neuron growth in vitro. cPMSCs are analogous to human PMSCs. They meet the criteria to be defined as MSCs and represent a potential regenerative therapy option for neurological disorders in dogs with their robust growth in collagen hydrogel, stimulation of neural network formation, and secretion of potent paracrine factors. © 2017 International Society for Advancement of Cytometry.


Subject(s)
Dog Diseases/therapy , Mesenchymal Stem Cells/cytology , Nervous System Diseases/veterinary , Placenta/cytology , Animals , Cell Line , Coculture Techniques , Dogs , Female , Humans , Mesenchymal Stem Cells/physiology , Nervous System Diseases/therapy , Neurogenesis , Phenotype , Pregnancy , Regenerative Medicine , Spinal Cord Injuries/therapy , Spinal Cord Injuries/veterinary
8.
Cytotherapy ; 19(6): 680-688, 2017 06.
Article in English | MEDLINE | ID: mdl-28438482

ABSTRACT

BACKGROUND: In this study we describe the development of a Current Good Manufacturing Practice (CGMP)-compliant process to isolate, expand and bank placenta-derived mesenchymal stromal cells (PMSCs) for use as stem cell therapy. We characterize the viability, proliferation and neuroprotective secretory profile of PMSCs seeded on clinical-grade porcine small intestine submucosa extracellular matrix (SIS-ECM; Cook Biotech). METHODS: PMSCs were isolated from early gestation placenta chorionic villus tissue via explant culture. Cells were expanded, banked and screened. Purity and expression of markers of pluripotency were determined using flow cytometry. Optimal loading density and viability of PMSCs on SIS-ECM were determined using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) cell proliferation and fluorescent live/dead assays, respectively. Growth factors secretion was analyzed using enzyme-linked immunosorbent assays (ELISA). RESULTS: PMSCs were rapidly expanded and banked. Viable Master and Working Cell Banks were stable with minimal decrease in viability at 6 months. All PMSCs were sterile, free from Mycoplasma species, karyotypically normal and had low endotoxin levels. PMSCs were homogeneous by immunophenotyping and expressed little to no pluripotency markers. Optimal loading density on SIS-ECM was 3-5 × 105 cells/cm2, and seeded cells were >95% viable. Neurotrophic factor secretion was detectable from PMSCs seeded on plastic and SIS-ECM with variability between donor lots. DISCUSSION: PMSCs from early gestation placental tissues can be rapidly expanded and banked in stable, viable cell banks that are free from contaminating agents, genetically normal and pure. PMSC delivery can be accomplished by using SIS-ECM, which maintains cell viability and protein secretion. Future work in vivo is necessary to optimize cell seeding and transplantation to maximize therapeutic capabilities.


Subject(s)
Cell Culture Techniques/methods , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Placenta/cytology , Animals , Cell Proliferation , Cells, Cultured , Chorionic Villi , Enzyme-Linked Immunosorbent Assay , Extracellular Matrix , Female , Flow Cytometry , Humans , Immunophenotyping , Mesenchymal Stem Cell Transplantation , Pregnancy , Swine
9.
Environ Toxicol ; 31(4): 427-39, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25346179

ABSTRACT

Microcystin-LR is a cyanobacterial toxin found in surface and recreational waters that inhibits protein phosphatases and may disrupt the cytoskeleton. Microcystins induce apoptosis in hepatocytes at ≤ 2.0 µM. Nothing is known about the effects of microcystins on human placental trophoblast differentiation and function. The differentiation of villous trophoblasts to form syncytiotrophoblast occurs throughout pregnancy and is essential for normal placental and fetal development. To investigate the effects of microcystin, villous cytotrophoblasts were isolated from term placentas using an established method and exposed to microcystin-LR. Microcystin-LR below the cytotoxic dose of 25 µM did not cause cell rounding or detachment, had no effect on apoptosis, and no effect on the morphological differentiation of mononucleated cytotrophoblasts to multinucleated syncytiotrophoblast. However, secretion of human chorionic gonadotropin (hCG) increased in a microcystin-LR dose-dependent manner. When incubated with l-buthionine sulphoximine (BSO) to deplete glutathione levels, trophoblast morphological differentiation proceeded normally in the presence of microcystin-LR. Microcystin-LR did not disrupt the trophoblast microtubule cytoskeleton, which is known to play a role in trophoblast differentiation. Immunofluorescence studies showed that trophoblasts express organic anion transport protein 1B3 (OATP1B3), a known microcystin transport protein. In comparison to hepatocytes, trophoblasts appear to be more resistant to the toxic effects of microcystin-LR. The physiological implications of increased hCG secretion in response to microcystin-LR exposure remain to be determined.


Subject(s)
Bacterial Toxins/toxicity , Marine Toxins/toxicity , Microcystins/toxicity , Trophoblasts/drug effects , Apoptosis/drug effects , Cell Differentiation/drug effects , Cells, Cultured , Chorionic Gonadotropin/metabolism , Female , Humans , Placenta/cytology , Pregnancy , Trophoblasts/cytology , Trophoblasts/metabolism
10.
J Pediatr Surg ; 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38490883

ABSTRACT

BACKGROUND: Neuroblastoma is a common pediatric malignancy with poor survival for high-risk disease. Mesenchymal stromal cells (MSCs) have innate tumor-homing properties, enabling them to serve as a cellular delivery vehicle, but MSCs have demonstrated variable effects on tumor growth. We compared how placental MSCs (PMSCs) and bone marrow-derived MSCs (BM-MSCs) affect proliferation of neuroblastoma (NB) cells in vitro. METHODS: Indirect co-culture assessed proliferative effects of 18 MSCs (early-gestation PMSCs (n = 9), term PMSCs (n = 5), BM-MSCs (n = 4) on three high-risk NB cell lines (NB1643, SH-SY5Y, and CHLA90). Controls were NB cells cultured in media alone. Proliferation was assessed using MTS assay and measured by fold change (fc) over controls. PMSCs were sub-grouped by neuroprotective effect: strong (n = 7), intermediate (n = 3), and weak (n = 4). The relationship between MSC type, PMSC neuroprotection, and PMSC gestational age on NB cell proliferation was assessed. RESULTS: NB cell proliferation varied between MSC groups. BM-MSCs demonstrated lower proliferative effects than PMSCs (fc 1.18 vs 1.44, p < 0.001). Neither gestational age nor neuroprotection significantly predicted degree of proliferation. Proliferative effects of MSCs varied among NB cell lines. BM-MSCs had less effect on CHLA90 (fc 1.01) compared to NB1643 (fc 1.33) and SH-SY5Y (fc 1.20). Only NB1643 showed a difference between early and term PMSCs (p = 0.04). CONCLUSION: Effects of MSCs on NB cell proliferation vary by MSC source and NB cell line. BM-MSCs demonstrated lower proliferative effects than most PMSCs. MSC neuroprotection was not correlated with proliferation. Improved understanding of MSC proliferation-promoting mechanisms may provide valuable insight into selection of cells best suited as drug delivery vehicles. LEVEL OF EVIDENCE: N/A. TYPE OF STUDY: Original Research.

11.
In Vivo ; 38(2): 531-538, 2024.
Article in English | MEDLINE | ID: mdl-38418146

ABSTRACT

BACKGROUND/AIM: Neuroblastoma is a common childhood cancer with poor survival for children with high-risk disease, and ongoing research to improve outcomes is needed. Patient-derived xenografts (PDX) and genetically engineered mouse models (GEMM) are reliable models for oncologic research; however, they are resource-intensive, expensive, and require significant expertise to develop and maintain. We developed an orthotopic xenograft murine model of neuroblastoma that utilizes cryopreserved banks of human neuroblastoma cell lines, requires minimal equipment, and is easily reproducible. MATERIALS AND METHODS: The neuroblastoma cell line NB1643 was obtained from the Children's Oncology Group (COG) Childhood Cancer Repository. Nod-SCID-gamma (NSG) mice underwent orthotopic injection of 2x106 NB1643 cells suspended in 10 µl of collagen hydrogel directly into the adrenal gland via an open retroperitoneal surgical approach. Mice were monitored by ultrasound and in vivo imaging system (IVIS) until the tumor reached the volume of the ipsilateral kidney. Tumor identity was confirmed by necropsy and histologic analysis. RESULTS: A total of 55 mice underwent surgery. Eight died due to anesthetic or surgical complications. 39/47 (78%) survivors grew primary adrenal tumors. Average anesthesia time was 30 min. Ultrasound and IVIS successfully characterized tumor growth in all mice. Average time to target tumor size was 5 weeks (range=3-9). Gross pathologic and histologic analysis confirmed adrenal tumors consistent with neuroblastoma in all mice with adrenal masses. CONCLUSION: A cell-derived orthotopic xenograft murine model can be successfully used to create an in vivo model of neuroblastoma. This model can be utilized in environments where PDX or GEMM models are not feasible.


Subject(s)
Adrenal Gland Neoplasms , Neuroblastoma , Child , Humans , Animals , Mice , Disease Models, Animal , Heterografts , Mice, SCID , Neuroblastoma/genetics , Neuroblastoma/pathology , Adrenal Gland Neoplasms/pathology , Xenograft Model Antitumor Assays , Cell Line, Tumor
12.
Patterns (N Y) ; 4(2): 100686, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36873901

ABSTRACT

As a measure of cytotoxic potency, half-maximal inhibitory concentration (IC50) is the concentration at which a drug exerts half of its maximal inhibitory effect against target cells. It can be determined by various methods that require applying additional reagents or lysing the cells. Here, we describe a label-free Sobel-edge-based method, which we name SIC50, for the evaluation of IC50. SIC50 classifies preprocessed phase-contrast images with a state-of-the-art vision transformer and allows for the continuous assessment of IC50 in a faster and more cost-efficient manner. We have validated this method using four drugs and 1,536-well plates and also built a web application. We anticipate that this method will assist in the high-throughput screening of chemical libraries (e.g., small-molecule drugs, small interfering RNA [siRNA], and microRNA and drug discovery).

13.
J Pediatr Surg ; 58(5): 964-970, 2023 May.
Article in English | MEDLINE | ID: mdl-36797111

ABSTRACT

INTRODUCTION: Congenital diaphragmatic hernia (CDH) repair is an area of active research. Large defects requiring patches have a hernia recurrence rate of up to 50%. We designed a biodegradable polyurethane (PU)-based elastic patch that matches the mechanical properties of native diaphragm muscle. We compared the PU patch to a non-biodegradable Gore-Tex™ (polytetrafluoroethylene) patch. METHODS: The biodegradable polyurethane was synthesized from polycaprolactone, hexadiisocyanate and putrescine, and then processed into fibrous PU patches by electrospinning. Rats underwent 4 mm diaphragmatic hernia (DH) creation via laparotomy followed by immediate repair with Gore-Tex™ (n = 6) or PU (n = 6) patches. Six rats underwent sham laparotomy without DH creation/repair. Diaphragm function was evaluated by fluoroscopy at 1 and 4 weeks. At 4 weeks, animals underwent gross inspection for recurrence and histologic evaluation for inflammatory reaction to the patch materials. RESULTS: There were no hernia recurrences in either cohort. Gore-Tex™ had limited diaphragm rise compared to sham at 4 weeks (1.3 mm vs 2.9 mm, p = 0.003), but no difference was found between PU and sham (1.7 mm vs 2.9 mm, p = 0.09). There were no differences between PU and Gore-Tex™ at any time point. Both patches formed an inflammatory capsule, with similar thicknesses between cohorts on the abdominal (Gore-Tex™ 0.07 mm vs. PU 0.13 mm, p = 0.39) and thoracic (Gore-Tex™ 0.3 mm vs. PU 0.6 mm, p = 0.09) sides. CONCLUSION: The biodegradable PU patch allowed for similar diaphragmatic excursion compared to control animals. There were similar inflammatory responses to both patches. Further work is needed to evaluate long-term functional outcomes and further optimize the properties of the novel PU patch in vitro and in vivo. LEVEL OF EVIDENCE: Level II, Prospective Comparative Study.


Subject(s)
Hernias, Diaphragmatic, Congenital , Rats , Animals , Hernias, Diaphragmatic, Congenital/surgery , Pilot Projects , Polyurethanes , Prospective Studies , Diaphragm/surgery , Retrospective Studies
14.
Adv Biol (Weinh) ; 6(10): e2200087, 2022 10.
Article in English | MEDLINE | ID: mdl-35778828

ABSTRACT

Cardiovascular diseases (CVD) remain one of the leading causes of mortality worldwide. Despite recent advances in diagnosis and interventions, there is still a crucial need for new multifaceted therapeutics that can address the complicated pathophysiological mechanisms driving CVD. Extracellular vesicles (EVs) are nanovesicles that are secreted by all types of cells to transport molecular cargo and regulate intracellular communication. EVs represent a growing field of nanotheranostics that can be leveraged as diagnostic biomarkers for the early detection of CVD and as targeted drug delivery vesicles to promote cardiovascular repair and recovery. Though a promising tool for CVD therapy, the clinical application of EVs is limited by the inherent challenges in EV isolation, standardization, and delivery. Hence, this review will present the therapeutic potential of EVs and introduce bioengineering strategies that augment their natural functions in CVD.


Subject(s)
Cardiovascular Diseases , Extracellular Vesicles , Humans , Cardiovascular Diseases/diagnosis , Bioengineering , Drug Delivery Systems , Biomarkers
15.
Adv Biol (Weinh) ; 6(2): e2101099, 2022 02.
Article in English | MEDLINE | ID: mdl-35023637

ABSTRACT

Multiple sclerosis (MS) is a debilitating degenerative disease characterized by an immunological attack on the myelin sheath leading to demyelination and axon degeneration. Mesenchymal stem/stromal cells (MSCs) and secreted extracellular vesicles (EVs) have become attractive targets as therapies to treat neurodegenerative diseases such as MS due to their potent immunomodulatory and regenerative properties. The placenta is a unique source of MSCs (PMSCs), demonstrates "fetomaternal" tolerance during pregnancy, and serves as a novel source of MSCs for the treatment of neurodegenerative diseases. PMSCs and PMSC-EVs have been shown to promote remyelination in animal models of MS, however, the molecular mechanisms by which modulation of autoimmunity and promotion of myelination occurs have not been well elucidated. The current review will address the molecular mechanisms by which PMSC-EVs can promote remyelination in MS.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Multiple Sclerosis , Remyelination , Animals , Female , Multiple Sclerosis/therapy , Myelin Sheath , Placenta , Pregnancy
16.
ACS Appl Mater Interfaces ; 14(49): 54458-54477, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36448709

ABSTRACT

Lipid rafts are highly ordered regions of the plasma membrane enriched in signaling proteins and lipids. Their biological potential is realized in exosomes, a subclass of extracellular vesicles (EVs) that originate from the lipid raft domains. Previous studies have shown that EVs derived from human placental mesenchymal stromal cells (PMSCs) possess strong neuroprotective and angiogenic properties. However, clinical translation of EVs is challenged by very low, impure, and heterogeneous yields. Therefore, in this study, lipid rafts are validated as a functional biomaterial that can recapitulate the exosomal membrane and then be synthesized into biomimetic nanovesicles. Lipidomic and proteomic analyses show that lipid raft isolates retain functional lipids and proteins comparable to PMSC-EV membranes. PMSC-derived lipid raft nanovesicles (LRNVs) are then synthesized at high yields using a facile, extrusion-based methodology. Evaluation of biological properties reveals that LRNVs can promote neurogenesis and angiogenesis through modulation of lipid raft-dependent signaling pathways. A proof-of-concept methodology further shows that LRNVs could be loaded with proteins or other bioactive cargo for greater disease-specific functionalities, thus presenting a novel type of biomimetic nanovesicles that can be leveraged as targeted therapeutics for regenerative medicine.


Subject(s)
Placenta , Proteomics , Female , Humans , Pregnancy , Membrane Microdomains , Cell Membrane/metabolism , Proteins/metabolism , Lipids
17.
J Pediatr Surg ; 57(1): 18-25, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34657738

ABSTRACT

PURPOSE: Augmentation of in utero myelomeningocele repair with human placental mesenchymal stromal cells seeded onto extracellular matrix (PMSC-ECM) improves motor outcomes in an ovine myelomeningocele model. This study evaluated the safety of PMSC-ECM application directly onto the fetal spinal cord in preparation for a clinical trial. METHODS: Laminectomy of L5-L6 with PMSC-ECM placement directly onto the spinal cord was performed in five fetal lambs at gestational age (GA) 100-106 days. Lambs and ewes were monitored for three months following delivery. Lambs underwent magnetic resonance imaging (MRI) of the brain and spine at birth and at three months. All organs from lambs and uteri from ewes underwent histologic evaluation. Lamb spinal cords and brains and ewe placentas were evaluated for persistence of PMSCs by polymerase chain reaction for presence of human DNA. RESULTS: MRIs demonstrated no evidence of abnormal tissue growth or spinal cord tethering. Histological analysis demonstrated no evidence of abnormal tissue growth or treatment related adverse effects. No human DNA was identified in evaluated tissues. CONCLUSION: There was no evidence of abnormal tissue growth or PMSC persistence at three months following in utero application of PMSC-ECM to the spinal cord. This supports proceeding with clinical trials of PMSC-ECM for in utero myelomeningocele repair. LEVEL OF EVIDENCE: N/A TYPE OF STUDY: Basic science.


Subject(s)
Meningomyelocele , Mesenchymal Stem Cells , Animals , Female , Humans , Meningomyelocele/surgery , Placenta , Pregnancy , Sheep , Sheep, Domestic , Uterus
18.
J Pediatr Surg ; 57(4): 753-758, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34217509

ABSTRACT

BACKGROUND: While fetal repair of myelomeningocele (MMC) revolutionized management, many children are still unable to walk independently. Preclinical studies demonstrated that research-grade placental mesenchymal stromal cells (PMSCs) prevent paralysis in fetal ovine MMC, however this had not been replicated with clinical-grade cells that could be used in an upcoming human clinical trial. We tested clinical-grade PMSCs seeded on an extracellular matrix (PMSC-ECM) in the gold standard fetal ovine model of MMC. METHODS: Thirty-five ovine fetuses underwent MMC defect creation at a median of 76 days gestational age, and defect repair at 101 days gestational age with application of clinical-grade PMSC-ECM (3 × 105 cells/cm2, n = 12 fetuses), research-grade PMSC-ECM (3 × 105 cells/cm2, three cell lines with n = 6 (Group 1), n = 6 (Group 2), and n = 3 (Group 3) fetuses, respectively) or ECM without PMSCs (n = 8 fetuses). Three normal lambs underwent no surgical interventions. The primary outcome was motor function measured by the Sheep Locomotor Rating scale (SLR, range 0: complete paralysis to 15: normal ambulation) at 24 h of life. Correlation of lumbar spine large neuron density with SLR was evaluated. RESULTS: Clinical-grade PMSC-ECM lambs had significantly better motor function than ECM-only lambs (SLR 14.5 vs. 6.5, p = 0.04) and were similar to normal lambs (14.5 vs. 15, p = 0.2) and research-grade PMSC-ECM lambs (Group 1: 14.5 vs. 15, p = 0.63; Group 2: 14.5 vs. 14.5, p = 0.86; Group 3: 14.5 vs. 15, p = 0.50). Lumbar spine large neuron density was strongly correlated with motor function (r = 0.753, p<0.001). CONCLUSIONS: Clinical-grade placental mesenchymal stromal cells seeded on an extracellular matrix rescued ambulation in a fetal ovine myelomeningocele model. Lumbar spine large neuron density correlated with motor function, suggesting a neuroprotective effect of the PMSC-ECM in prevention of paralysis. A first-in-human clinical trial of PMSCs in human fetal myelomeningocele repair is underway.


Subject(s)
Meningomyelocele , Mesenchymal Stem Cells , Animals , Female , Fetus/surgery , Gestational Age , Humans , Meningomyelocele/surgery , Placenta , Pregnancy , Sheep
19.
Bioact Mater ; 10: 460-473, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34901560

ABSTRACT

Diabetic ischemic wound treatment remains a critical clinical challenge. Neovascularization plays a significant role in wound healing during all stages of the tissue repair process. Strategies that enhance angiogenesis and neovascularization and improve ischemic pathology may promote the healing of poor wounds, particularly diabetic wounds in highly ischemic conditions. We previously identified a cyclic peptide LXW7 that specifically binds to integrin αvß3 on endothelial progenitor cells (EPCs) and endothelial cells (ECs), activates vascular endothelial growth factor (VEGF) receptors, and promotes EC growth and maturation. In this study, we designed and synthesized a multi-functional pro-angiogenic molecule by grafting LXW7 and collagen-binding peptides (SILY) to a dermatan sulfate (DS) glycosaminoglycan backbone, named LXW7-DS-SILY, and further employed this multi-functional molecule to functionalize collagen-based extracellular matrix (ECM) scaffolds. We confirmed that LXW7-DS-SILY modification significantly promoted EPC attachment and growth on the ECM scaffolds in vitro and supported EPC survival in vivo in the ischemic environment. When applied in an established Zucker Diabetic Fatty (ZDF) rat ischemic skin flap model, LXW7-DS-SILY-functionalized ECM scaffolds loaded with EPCs significantly improved wound healing, enhanced neovascularization and modulated collagen fibrillogenesis in the ischemic environment. Altogether, this study provides a promising novel treatment to accelerate diabetic ischemic wound healing, thereby reducing limb amputation and mortality of diabetic patients.

20.
J Pediatr Surg ; 57(5): 941-948, 2022 May.
Article in English | MEDLINE | ID: mdl-35093254

ABSTRACT

INTRODUCTION: Fetal myelomeningocele (MMC) repair improves lower extremity motor function. We have previously demonstrated that augmentation of fetal MMC repair with placental mesenchymal stromal cells (PMSCs) seeded on extracellular matrix (PMSC-ECM) further improves motor function in the ovine model. However, little progress has been made in improving bowel and bladder function, with many patients suffering from neurogenic bowel and bladder. We hypothesized that fetal MMC repair with PMSC-ECM would also improve bowel and bladder function. METHODS: MMC defects were surgically created in twelve ovine fetuses at median gestational age (GA) 73 days, followed by defect repair at GA101 with PMSC-ECM. Fetuses were delivered at GA141. Primary bladder function outcomes were voiding posture and void volumes. Primary bowel function outcome was anorectal manometry findings including resting anal pressure and presence of rectoanal inhibitory reflex (RAIR). Secondary outcomes were anorectal and bladder detrusor muscle thickness. PMSC-ECM lambs were compared to normal lambs (n = 3). RESULTS: Eighty percent of PMSC-ECM lambs displayed normal voiding posture compared to 100% of normal lambs (p = 1). Void volumes were similar (PMSC-ECM 6.1 ml/kg vs. normal 8.8 ml/kg, p = 0.4). Resting mean anal pressures were similar between cohorts (27.0 mmHg PMSC-ECM vs. normal 23.5 mmHg, p = 0.57). RAIR was present in 3/5 PMSC-ECM lambs that underwent anorectal manometry and all normal lambs (p = 0.46). Thicknesses of anal sphincter complex, rectal wall muscles, and bladder detrusor muscles were similar between cohorts. CONCLUSION: Ovine fetal MMC repair augmented with PMSC-ECM results in near-normal bowel and bladder function. Further work is needed to evaluate these outcomes in human patients.


Subject(s)
Meningomyelocele , Mesenchymal Stem Cells , Animals , Female , Fetus/surgery , Humans , Meningomyelocele/complications , Meningomyelocele/surgery , Placenta , Pregnancy , Sheep , Sheep, Domestic , Urinary Bladder/surgery
SELECTION OF CITATIONS
SEARCH DETAIL