Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
Add more filters

Publication year range
1.
Immunity ; 52(4): 683-699.e11, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32294408

ABSTRACT

Mucociliary clearance through coordinated ciliary beating is a major innate defense removing pathogens from the lower airways, but the pathogen sensing and downstream signaling mechanisms remain unclear. We identified virulence-associated formylated bacterial peptides that potently stimulated ciliary-driven transport in the mouse trachea. This innate response was independent of formyl peptide and taste receptors but depended on key taste transduction genes. Tracheal cholinergic chemosensory cells expressed these genes, and genetic ablation of these cells abrogated peptide-driven stimulation of mucociliary clearance. Trpm5-deficient mice were more susceptible to infection with a natural pathogen, and formylated bacterial peptides were detected in patients with chronic obstructive pulmonary disease. Optogenetics and peptide stimulation revealed that ciliary beating was driven by paracrine cholinergic signaling from chemosensory to ciliated cells operating through muscarinic M3 receptors independently of nerves. We provide a cellular and molecular framework that defines how tracheal chemosensory cells integrate chemosensation with innate defense.


Subject(s)
Acetylcholine/immunology , Bacterial Proteins/pharmacology , Cilia/immunology , Mucociliary Clearance/immunology , Pulmonary Disease, Chronic Obstructive/immunology , TRPM Cation Channels/immunology , Trachea/immunology , Acetylcholine/metabolism , Animals , Bacterial Proteins/immunology , Biological Transport , Cilia/drug effects , Cilia/metabolism , Female , Formates/metabolism , Gene Expression , Humans , Immunity, Innate , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Optogenetics/methods , Paracrine Communication/immunology , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/pathology , Receptor, Muscarinic M3/genetics , Receptor, Muscarinic M3/immunology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/immunology , TRPM Cation Channels/deficiency , TRPM Cation Channels/genetics , Taste Buds/immunology , Taste Buds/metabolism , Trachea/drug effects , Trachea/pathology , Virulence
2.
EMBO J ; 39(21): e103476, 2020 11 02.
Article in English | MEDLINE | ID: mdl-32985719

ABSTRACT

Organoids derived from mouse and human stem cells have recently emerged as a powerful tool to study organ development and disease. We here established a three-dimensional (3D) murine bronchioalveolar lung organoid (BALO) model that allows clonal expansion and self-organization of FACS-sorted bronchioalveolar stem cells (BASCs) upon co-culture with lung-resident mesenchymal cells. BALOs yield a highly branched 3D structure within 21 days of culture, mimicking the cellular composition of the bronchioalveolar compartment as defined by single-cell RNA sequencing and fluorescence as well as electron microscopic phenotyping. Additionally, BALOs support engraftment and maintenance of the cellular phenotype of injected tissue-resident macrophages. We also demonstrate that BALOs recapitulate lung developmental defects after knockdown of a critical regulatory gene, and permit modeling of viral infection. We conclude that the BALO model enables reconstruction of the epithelial-mesenchymal-myeloid unit of the distal lung, thereby opening numerous new avenues to study lung development, infection, and regenerative processes in vitro.


Subject(s)
Lung Diseases/pathology , Lung/growth & development , Organoids/growth & development , Stem Cells/physiology , Animals , Ataxin-1/genetics , Ataxin-1/metabolism , Cell Differentiation/genetics , Cells, Cultured , Endothelial Cells/cytology , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cell Adhesion Molecule/metabolism , Epithelial Cells/cytology , Fibroblasts , Humans , Lung/cytology , Mesenchymal Stem Cells , Mice , Morphogenesis/genetics , Morphogenesis/physiology , Organogenesis/physiology , Organoids/cytology , Pulmonary Alveoli/cytology , Pulmonary Alveoli/growth & development , RNA, Messenger/metabolism , Regeneration/genetics , Regeneration/physiology
3.
Cell Tissue Res ; 390(1): 35-49, 2022 Oct.
Article in English | MEDLINE | ID: mdl-34762185

ABSTRACT

The conducting airways are lined by distinct cell types, comprising basal, secretory, ciliated, and rare cells, including ionocytes, solitary cholinergic chemosensory cells, and solitary and clustered (neuroepithelial bodies) neuroendocrine cells. Airway neuroendocrine cells are in clinical focus since they can give rise to small cell lung cancer. They have been implicated in diverse functions including mechanosensation, chemosensation, and regeneration, and were recently identified as regulators of type 2 immune responses via the release of the neuropeptide calcitonin gene-related peptide (CGRP). We here assessed the expression of the chemokine CXCL13 (B cell attracting chemokine) by these cells by RT-PCR, in silico analysis of publicly available sequencing data sets, immunohistochemistry, and immuno-electron microscopy. We identify a phenotype of neuroendocrine cells in the naïve mouse, producing the chemokine CXCL13 predominantly in solitary neuroendocrine cells of the tracheal epithelium (approx. 70% CXCL13+) and, to a lesser extent, in the solitary neuroendocrine cells and neuroepithelial bodies of the intrapulmonary bronchial epithelium (< 10% CXCL13+). In silico analysis of published sequencing data of murine tracheal epithelial cells was consistent with the results obtained by immunohistochemistry as it revealed that neuroendocrine cells are the major source of Cxcl13-mRNA, which was expressed by 68-79% of neuroendocrine cells. An unbiased scRNA-seq data analysis of overall gene expression did not yield subclusters of neuroendocrine cells. Our observation demonstrates phenotypic heterogeneity of airway neuroendocrine cells and points towards a putative immunoregulatory role of these cells in bronchial-associated lymphoid tissue formation and B cell homeostasis.


Subject(s)
Chemokine CXCL13 , Neuroendocrine Cells , Animals , Calcitonin Gene-Related Peptide/metabolism , Cholinergic Agents , Epithelial Cells/metabolism , Lung/metabolism , Mice , Neuroendocrine Cells/metabolism , RNA, Messenger/genetics , Trachea
4.
Histochem Cell Biol ; 156(6): 539-553, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34545457

ABSTRACT

The olfactory receptor Olfr78 (prostate-specific G protein-coupled receptor PSGR) is a member of the G protein-coupled receptor family mediating olfactory chemosensation, but it is additionally expressed in other tissues. Olfr78 expressed in kidney participates in blood pressure regulation, and in prostate it plays a role in the development of cancer. We here screened many organs/tissues of transgenic mice co-expressing ß-galactosidase with Olfr78. X-gal-positive cells were detectable in smooth muscle cells of numerous arterioles of striated muscles (heart ventricles and skeletal muscles of various embryological origin). In addition, in most organs where we found expression of Olfr78 mRNA, X-gal staining was restricted to smooth muscle cells of small blood vessels. The dominant expression of Olfr78 in arteriolar smooth muscle cells supports the concept of an important role in blood pressure regulation and suggests a participation in the fine tuning of blood supply especially of striated muscles. This should be considered when targeting Olfr78 in other contexts such as prostate cancer.


Subject(s)
Arterioles/metabolism , Muscle, Skeletal/metabolism , Muscle, Smooth/metabolism , Myocardium/metabolism , Receptors, Odorant/genetics , Animals , Mice , Mice, Inbred C57BL , Mice, Transgenic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Odorant/metabolism
5.
Cell Tissue Res ; 385(1): 21-35, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33616728

ABSTRACT

Cholinergic chemosensory cells (CCC) are infrequent epithelial cells with immunosensor function, positioned in mucosal epithelia preferentially near body entry sites in mammals including man. Given their adaptive capacity in response to infection and their role in combatting pathogens, we here addressed the time points of their initial emergence as well as their postnatal development from first exposure to environmental microbiota (i.e., birth) to adulthood in urethra and trachea, utilizing choline acetyltransferase (ChAT)-eGFP reporter mice, mice with genetic deletion of MyD88, toll-like receptor-2 (TLR2), TLR4, TLR2/TLR4, and germ-free mice. Appearance of CCC differs between the investigated organs. CCC of the trachea emerge during embryonic development at E18 and expand further after birth. Urethral CCC show gender diversity and appear first at P6-P10 in male and at P11-P20 in female mice. Urethrae and tracheae of MyD88- and TLR-deficient mice showed significantly fewer CCC in all four investigated deficient strains, with the effect being most prominent in the urethra. In germ-free mice, however, CCC numbers were not reduced, indicating that TLR2/4-MyD88 signaling, but not vita-PAMPs, governs CCC development. Collectively, our data show a marked postnatal expansion of CCC populations with distinct organ-specific features, including the relative impact of TLR2/4-MyD88 signaling. Strong dependency on this pathway (urethra) correlates with absence of CCC at birth and gender-specific initial development and expansion dynamics, whereas moderate dependency (trachea) coincides with presence of first CCC at E18 and sex-independent further development.


Subject(s)
Biosensing Techniques/methods , Cholinergic Agents/metabolism , Epithelial Cells/metabolism , Immunity, Innate/immunology , Trachea/physiology , Urethra/physiology , Animals , Male , Mice
6.
FASEB J ; 32(6): 2903-2910, 2018 06.
Article in English | MEDLINE | ID: mdl-29401598

ABSTRACT

We have recently identified a cholinergic chemosensory cell in the urethral epithelium, urethral brush cell (UBC), that, upon stimulation with bitter or bacterial substances, initiates a reflex detrusor activation. Here, we elucidated cholinergic mechanisms that modulate UBC responsiveness. We analyzed muscarinic acetylcholine receptor (M1-5 mAChR) expression by using RT-PCR in UBCs, recorded [Ca2+]i responses to a bitter stimulus in isolated UBCs of wild-type and mAChR-deficient mice, and performed cystometry in all involved strains. The bitter response of UBCs was enhanced by global cholinergic and selective M2 inhibition, diminished by positive allosteric modulation of M5, and unaffected by M1, M3, and M4 mAChR inhibitors. This effect was not observed in M2 and M5 mAChR-deficient mice. In cystometry, M5 mAChR-deficient mice demonstrated signs of detrusor overactivity. In conclusion, M2 and M5 mAChRs attenuate the bitter response of UBC via a cholinergic negative autocrine feedback mechanism. Cystometry suggests that dysfunction, particularly of the M5 receptor, may lead to such symptoms as bladder overactivity.-Deckmann, K., Rafiq, A., Erdmann, C., Illig, C., Durschnabel, M., Wess, J., Weidner, W., Bschleipfer, T., Kummer, W. Muscarinic receptors 2 and 5 regulate bitter response of urethral brush cells via negative feedback.


Subject(s)
Epithelial Cells/metabolism , Muscarinic Antagonists/pharmacology , Receptor, Muscarinic M2 , Receptor, Muscarinic M5 , Urethra/metabolism , Allosteric Regulation/drug effects , Animals , Epithelial Cells/pathology , Mice , Mice, Knockout , Receptor, Muscarinic M2/antagonists & inhibitors , Receptor, Muscarinic M2/biosynthesis , Receptor, Muscarinic M2/genetics , Receptor, Muscarinic M5/antagonists & inhibitors , Receptor, Muscarinic M5/biosynthesis , Receptor, Muscarinic M5/genetics , Reverse Transcriptase Polymerase Chain Reaction , Urethra/pathology , Urethra/physiopathology , Urinary Bladder, Overactive/genetics , Urinary Bladder, Overactive/metabolism , Urinary Bladder, Overactive/pathology , Urinary Bladder, Overactive/physiopathology
7.
Crit Care Med ; 46(3): e258-e267, 2018 03.
Article in English | MEDLINE | ID: mdl-29298188

ABSTRACT

OBJECTIVES: Severe pneumonia may evoke acute lung injury, and sphingosine-1-phosphate is involved in the regulation of vascular permeability and immune responses. However, the role of sphingosine-1-phosphate and the sphingosine-1-phosphate producing sphingosine kinase 1 in pneumonia remains elusive. We examined the role of the sphingosine-1-phosphate system in regulating pulmonary vascular barrier function in bacterial pneumonia. DESIGN: Controlled, in vitro, ex vivo, and in vivo laboratory study. SUBJECTS: Female wild-type and SphK1-deficient mice, 8-10 weeks old. Human postmortem lung tissue, human blood-derived macrophages, and pulmonary microvascular endothelial cells. INTERVENTIONS: Wild-type and SphK1-deficient mice were infected with Streptococcus pneumoniae. Pulmonary sphingosine-1-phosphate levels, messenger RNA expression, and permeability as well as lung morphology were analyzed. Human blood-derived macrophages and human pulmonary microvascular endothelial cells were infected with S. pneumoniae. Transcellular electrical resistance of human pulmonary microvascular endothelial cell monolayers was examined. Further, permeability of murine isolated perfused lungs was determined following exposition to sphingosine-1-phosphate and pneumolysin. MEASUREMENTS AND MAIN RESULTS: Following S. pneumoniae infection, murine pulmonary sphingosine-1-phosphate levels and sphingosine kinase 1 and sphingosine-1-phosphate receptor 2 expression were increased. Pneumonia-induced lung hyperpermeability was reduced in SphK1 mice compared with wild-type mice. Expression of sphingosine kinase 1 in macrophages recruited to inflamed lung areas in pneumonia was observed in murine and human lungs. S. pneumoniae induced the sphingosine kinase 1/sphingosine-1-phosphate system in blood-derived macrophages and enhanced sphingosine-1-phosphate receptor 2 expression in human pulmonary microvascular endothelial cell in vitro. In isolated mouse lungs, pneumolysin-induced hyperpermeability was dose dependently and synergistically increased by sphingosine-1-phosphate. This sphingosine-1-phosphate-induced increase was reduced by inhibition of sphingosine-1-phosphate receptor 2 or its downstream effector Rho-kinase. CONCLUSIONS: Our data suggest that targeting the sphingosine kinase 1-/sphingosine-1-phosphate-/sphingosine-1-phosphate receptor 2-signaling pathway in the lung may provide a novel therapeutic perspective in pneumococcal pneumonia for prevention of acute lung injury.


Subject(s)
Acute Lung Injury/metabolism , Inflammation/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Pneumonia, Pneumococcal/metabolism , Receptors, Lysosphingolipid/metabolism , Acute Lung Injury/enzymology , Acute Lung Injury/etiology , Animals , Female , Humans , Inflammation/enzymology , Mice , Mice, Inbred C57BL , Pneumonia, Pneumococcal/complications , Pneumonia, Pneumococcal/enzymology , Sphingosine-1-Phosphate Receptors , Streptococcus pneumoniae
8.
Int J Mol Sci ; 19(4)2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29642561

ABSTRACT

While interleukin-1ß (IL-1ß) is a potent pro-inflammatory cytokine essential for host defense, high systemic levels cause life-threatening inflammatory syndromes. ATP, a stimulus of IL-1ß maturation, is released from damaged cells along with ß-nicotinamide adenine dinucleotide (ß-NAD). Here, we tested the hypothesis that ß-NAD controls ATP-signaling and, hence, IL-1ß release. Lipopolysaccharide-primed monocytic U937 cells and primary human mononuclear leukocytes were stimulated with 2'(3')-O-(4-benzoyl-benzoyl)ATP trieethylammonium salt (BzATP), a P2X7 receptor agonist, in the presence or absence of ß-NAD. IL-1ß was measured in cell culture supernatants. The roles of P2Y receptors, nicotinic acetylcholine receptors (nAChRs), and Ca2+-independent phospholipase A2 (iPLA2ß, PLA2G6) were investigated using specific inhibitors and gene-silencing. Exogenous ß-NAD signaled via P2Y receptors and dose-dependently (IC50 = 15 µM) suppressed the BzATP-induced IL-1ß release. Signaling involved iPLA2ß, release of a soluble mediator, and nAChR subunit α9. Patch-clamp experiments revealed that ß-NAD inhibited BzATP-induced ion currents. In conclusion, we describe a novel triple membrane-passing signaling cascade triggered by extracellular ß-NAD that suppresses ATP-induced release of IL-1ß by monocytic cells. This cascade links activation of P2Y receptors to non-canonical metabotropic functions of nAChRs that inhibit P2X7 receptor function. The biomedical relevance of this mechanism might be the control of trauma-associated systemic inflammation.


Subject(s)
Interleukin-1beta/metabolism , Monocytes/metabolism , NAD/pharmacology , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Cells, Cultured , Humans , Lipopolysaccharides/pharmacology , Nicotinic Antagonists/pharmacology , Phospholipase A2 Inhibitors/pharmacology , Phospholipases A2/genetics , Phospholipases A2/metabolism , Purinergic P2Y Receptor Antagonists/pharmacology , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Receptors, Purinergic P2Y/genetics , Receptors, Purinergic P2Y/metabolism
9.
Curr Opin Urol ; 27(2): 85-92, 2017 03.
Article in English | MEDLINE | ID: mdl-27846033

ABSTRACT

PURPOSE OF REVIEW: A specialized epithelial cell with chemosensory properties of taste cells known from the mouth has been newly identified in the urethra and linked to pathogen recognition. We here describe its properties and its link to defence mechanisms, showing parallels to similar sentinel cells in the respiratory and gastrointestinal tract. RECENT FINDINGS: In the urethra, slender epithelial cells with apical microvilli ('brush cells') express bitter and umami taste receptors and the downstream signalling cascade known from oropharyngeal gustation, utilizing it to monitor for bacterial products and bacterial growth facilitating conditions. Upon stimulation, they release acetylcholine, and their sensitivity is subjected to cholinergic feedback. They are approached by cholinoceptive sensory nerve fibres, and intraurethral bitter application evokes reflex detrusor activity. Similar cells in the respiratory and gastrointestinal mucosa additionally regulate immune function through local neurogenic inflammation and cytokine release, triggered by bacterial products and parasites. SUMMARY: This cell is interpreted to serve as chemosensory sentinel for potential hazardous compounds in the urethral lumen, triggering a protective mechanism (flushing through micturition) against further ascent. Dysfunction may be related to higher risk of infection or inadequate detrusor activity, pharmacological intervention may be considered to combat infection or detrusor overactivity.


Subject(s)
Epithelial Cells , Urethra , Urinary Bladder , Acetylcholine , Humans , Male , Taste
10.
J Immunol ; 195(5): 2325-34, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26202987

ABSTRACT

IL-1ß is a potent proinflammatory cytokine of the innate immune system that is involved in host defense against infection. However, increased production of IL-1ß plays a pathogenic role in various inflammatory diseases, such as rheumatoid arthritis, gout, sepsis, stroke, and transplant rejection. To prevent detrimental collateral damage, IL-1ß release is tightly controlled and typically requires two consecutive danger signals. LPS from Gram-negative bacteria is a prototypical first signal inducing pro-IL-1ß synthesis, whereas extracellular ATP is a typical second signal sensed by the ATP receptor P2X7 that triggers activation of the NLRP3-containing inflammasome, proteolytic cleavage of pro-IL-1ß by caspase-1, and release of mature IL-1ß. Mechanisms controlling IL-1ß release, even in the presence of both danger signals, are needed to protect from collateral damage and are of therapeutic interest. In this article, we show that acetylcholine, choline, phosphocholine, phosphocholine-modified LPS from Haemophilus influenzae, and phosphocholine-modified protein efficiently inhibit ATP-mediated IL-1ß release in human and rat monocytes via nicotinic acetylcholine receptors containing subunits α7, α9, and/or α10. Of note, we identify receptors for phosphocholine-modified macromolecules that are synthesized by microbes and eukaryotic parasites and are well-known modulators of the immune system. Our data suggest that an endogenous anti-inflammatory cholinergic control mechanism effectively controls ATP-mediated release of IL-1ß and that the same mechanism is used by symbionts and misused by parasites to evade innate immune responses of the host.


Subject(s)
Adenosine Triphosphate/pharmacology , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Monocytes/drug effects , Nicotinic Agonists/pharmacology , Acetylcholine/pharmacology , Adenosine Triphosphate/analogs & derivatives , Animals , Blotting, Western , Cells, Cultured , Choline/pharmacology , Dose-Response Relationship, Drug , Humans , Lipopolysaccharides/chemistry , Membrane Potentials/drug effects , Monocytes/metabolism , Nicotine/pharmacology , Phosphorylcholine/chemistry , RNA Interference , Rats , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Reverse Transcriptase Polymerase Chain Reaction , U937 Cells , alpha7 Nicotinic Acetylcholine Receptor/genetics , alpha7 Nicotinic Acetylcholine Receptor/metabolism
11.
Proc Natl Acad Sci U S A ; 111(22): 8287-92, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24843119

ABSTRACT

Chemosensory cells in the mucosal surface of the respiratory tract ("brush cells") use the canonical taste transduction cascade to detect potentially hazardous content and trigger local protective and aversive respiratory reflexes on stimulation. So far, the urogenital tract has been considered to lack this cell type. Here we report the presence of a previously unidentified cholinergic, polymodal chemosensory cell in the mammalian urethra, the potential portal of entry for bacteria and harmful substances into the urogenital system, but not in further centrally located parts of the urinary tract, such as the bladder, ureter, and renal pelvis. Urethral brush cells express bitter and umami taste receptors and downstream components of the taste transduction cascade; respond to stimulation with bitter (denatonium), umami (monosodium glutamate), and uropathogenic Escherichia coli; and release acetylcholine to communicate with other cells. They are approached by sensory nerve fibers expressing nicotinic acetylcholine receptors, and intraurethral application of denatonium reflexively increases activity of the bladder detrusor muscle in anesthetized rats. We propose a concept of urinary bladder control involving a previously unidentified cholinergic chemosensory cell monitoring the chemical composition of the urethral luminal microenvironment for potential hazardous content.


Subject(s)
Acetylcholine/metabolism , Chemoreceptor Cells/metabolism , Urethra/cytology , Urethra/metabolism , Urinary Bladder/physiology , Animals , Chemoreceptor Cells/cytology , Female , Green Fluorescent Proteins/genetics , Humans , Male , Mice , Mice, Transgenic , Microvilli/physiology , Paracrine Communication/physiology , Patch-Clamp Techniques , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/physiology , Sensory Receptor Cells/cytology , Sensory Receptor Cells/physiology , Taste/physiology , Tongue/cytology , Tongue/innervation , Tongue/physiology , Urethra/innervation , Urinary Bladder/innervation , Urodynamics/physiology , Urothelium/cytology , Urothelium/metabolism
12.
Histochem Cell Biol ; 146(6): 673-683, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27680547

ABSTRACT

A peculiar cell type of the respiratory and gastrointestinal epithelia, originally termed "brush cell" or "tuft cell" by electron microscopists because of its apical tuft of microvilli, utilizes the canonical bitter taste transduction cascade known from oropharyngeal taste buds to detect potential hazardous compounds, e.g. bacterial products. Upon stimulation, this cell initiates protective reflexes and local inflammatory responses through release of acetylcholine and chemokines. Guided by the understanding of these cells as sentinels, they have been newly discovered at previously unrecognized anatomical locations, including the urethra. Solitary cholinergic urethral cells express canonical taste receptors and are polymodal chemosensors for certain bitter substances, glutamate (umami) and uropathogenic Escherichia coli. Intraurethral bitter stimulation triggers cholinergic reflex activation of bladder detrusor activity, which is interpreted as cleaning flushing of the urethra. The currently known scenario suggests the presence of at least two more urethral chemosensory cell types: non-cholinergic brush cells and neuroendocrine serotonergic cells. The potential implications are enormous and far reaching, as these cells might be involved in monitoring and preventing ascending urinary tract infection and triggering of inappropriate detrusor activity. However, although appealing, this is still highly speculative, since the actual number of distinct chemosensory cell types needs to be finally clarified, as well as their embryological origin, developmental dynamics, receptor equipment, modes of signalling to adjacent nerve fibres and other cells, repertoire of chemo- and cytokines, involvement in pathogenesis of diseases and many other aspects.


Subject(s)
Chemoreceptor Cells/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Urethra/cytology , Urinary Tract/cytology , Humans , Urethra/metabolism , Urinary Tract/metabolism
13.
Cell Tissue Res ; 366(3): 587-599, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27553639

ABSTRACT

Heart valves are highly organized structures determining the direction of blood flow through the heart. Smooth muscle cells within the valve are thought to play an active role during the heart cycle, rather than being just passive flaps. The mature heart valve is composed of extracellular matrix (ECM), various differentiations of valvular interstitial cells (VIC), smooth muscle cells and overlying endothelium. VIC are important for maintaining the structural integrity of the valve, thereby affecting valve function and ECM remodelling. Accumulating evidence suggests an important role of calcitonin receptor-like receptor (CRL) signalling in preventing heart damage under several pathological conditions. Thus we investigate the existence of a putative CRL signalling system in mouse and human heart valves by real-time RT-PCR, laser-assisted microdissection, immunofluorescence and NADPH-diaphorase histochemistry. Mouse and human heart valves expressed mRNAs for the CRL ligands adrenomedullin (AM), adrenomedullin-2 (AM-2) and calcitonin gene-related peptide (CGRP) and for their receptor components, i.e., CRL and receptor-activity-modifying proteins 1-3. Immunofluorescence analysis revealed AM-, AM-2- and CRL-immunolabelling in endothelial cells and VIC, whereas CGRP immunoreactivity was restricted to nerve fibres and some endothelial cells. Nitric oxide synthase activity, as demonstrated by NADPH-diaphorase histochemistry, was shown mainly in valvular endothelial cells in mice, whereas in human aortic valves, VIC and smooth muscle cells were positive. Our results showed the presence of an intrinsic AM/AM-2/CGRP signalling system in murine and human heart valves with distinct cellular localization, suggesting its involvement in the regulation of valve stiffness and ECM production and turnover.


Subject(s)
Adrenomedullin/metabolism , Calcitonin Gene-Related Peptide/metabolism , Calcitonin Receptor-Like Protein/metabolism , Heart Valves/metabolism , Neuropeptides/metabolism , Peptide Hormones/metabolism , Signal Transduction , Animals , Antibody Specificity , Endothelial Cells/metabolism , Humans , Immunohistochemistry , Interstitial Cells of Cajal/cytology , Interstitial Cells of Cajal/metabolism , Laser Capture Microdissection , Mice, Inbred C57BL , Nerve Fibers/metabolism , Nitric Oxide Synthase/metabolism , Real-Time Polymerase Chain Reaction
14.
Cell Tissue Res ; 364(2): 245-62, 2016 May.
Article in English | MEDLINE | ID: mdl-26590824

ABSTRACT

Energy substrates and metabolic intermediates are proven ligands of a growing number of G-protein coupled receptors. In 2004, GPR91 and GPR99 were identified as receptors for the citric acid cycle intermediates, succinate and α-ketoglutarate, respectively. GPR91 seems to act as a first responder to local stress and GPR99 participates in the regulation of the acid-base balance through an intrarenal paracrine mechanism. However, a systematic analysis of the distribution of both receptors in mouse organs is still missing. The aim of this study was to examine the expression of GPR91 and GPR99 in a large number of different murine organs both at mRNA and protein level. Whereas GPR91 mRNA was detectable in almost all organs, GPR99 mRNA was mainly expressed in neuronal tissues. Widespread expression of GPR91 was also detected at the protein level by western blotting and immunohistochemistry. In addition to neuronal cells, GPR99 protein was found in renal intercalated cells and epididymal narrow cells. Double-labeling immunohistochemistry demonstrated the colocalization of GPR99 with the B1 subunit isoform of vacuolar H(+)-ATPases which is expressed only by a very limited number of cell types. In summary, our detailed expression analysis of GPR91 and GPR99 in murine tissues will allow a more directed search for additional functions of both receptors.


Subject(s)
Adrenal Glands/metabolism , Gastric Mucosa/metabolism , Intestinal Mucosa/metabolism , Kidney/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Purinergic P2/metabolism , Submandibular Gland/metabolism , Animals , Immunohistochemistry , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, Purinergic P2/genetics , Reverse Transcriptase Polymerase Chain Reaction , Stress, Physiological/physiology
15.
Histochem Cell Biol ; 143(3): 277-87, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25212661

ABSTRACT

The murine mCLCA5 protein is a member of the chloride channel regulators, calcium-activated (CLCA) family and is suspected to play a role in airway mucus cell differentiation. Although mCLCA5 mRNA was previously found in total lung extracts, the expressing cells and functions in the naive murine respiratory tract are unknown. Therefore, mCLCA5 protein expression was identified by immunohistochemistry and confocal laser scanning microscopy using entire lung sections of naive mice. Moreover, we determined mRNA levels of functionally related genes (mClca3, mClca5, Muc5ac and Muc5b) and quantified mCLCA5-, mCLCA3- and CC10-positive cells and periodic acid-Schiff-positive mucus cells in naive, PBS-treated or Staphylococcus aureus-infected mice. We also investigated mCLCA5 protein expression in Streptococcus pneumoniae and influenza virus lung infection models. Finally, we determined species-specific differences in the expression patterns of the murine mCLCA5 and its human and porcine orthologs, hCLCA2 and pCLCA2. The mCLCA5 protein is uniquely expressed in highly select bronchial epithelial cells and submucosal glands in naive mice, consistent with anatomical locations of progenitor cell niches. Under conditions of challenge (PBS, S. aureus, S. pneumoniae, influenza virus), mRNA and protein expression strongly declined with protein recovery only in models retaining intact epithelial cells. In contrast to mice, human and porcine bronchial epithelial cells do not express their respective mCLCA5 orthologs and submucosal glands had fewer expressing cells, indicative of fundamental differences in mice versus humans and pigs.


Subject(s)
Chloride Channels/biosynthesis , Chloride Channels/genetics , Epithelial Cells/cytology , Epithelial Cells/metabolism , Respiratory System/cytology , Stem Cell Niche , Animals , Chloride Channels/metabolism , Female , Humans , Mice , Mice, Inbred C57BL , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Respiratory System/metabolism , Swine
16.
J Physiol ; 592(8): 1745-56, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24535440

ABSTRACT

Dopamine not only is a precursor of the catecholamines noradrenaline and adrenaline but also serves as an independent neurotransmitter and paracrine hormone. It plays an important role in the pathogenesis of hypertension and is a potent vasodilator in many mammalian systemic arteries, strongly suggesting an endogenous source of dopamine in the vascular wall. Here we demonstrated dopamine, noradrenaline and adrenaline in rat aorta and superior mesenteric arteries (SMA) by radioimmunoassay. Chemical sympathectomy with 6-hydroxydopamine showed a significant reduction of noradrenaline and adrenaline, while dopamine levels remained unaffected. Isolated endothelial cells were able to synthesize and release dopamine upon cAMP stimulation. Consistent with these data, mRNAs coding for catecholamine synthesizing enzymes, i.e. tyrosine hydroxylase (TH), aromatic l-amino acid decarboxylase, and dopamine-ß-hydroxylase were detected by RT-PCR in cultured endothelial cells from SMA. TH protein was detected by immunohistochemisty and Western blot. Exposure of endothelial cells to hypoxia (1% O2) increased TH mRNA. Vascular smooth muscle cells partially expressed catecholaminergic traits. A physiological role of endogenous vascular dopamine was shown in SMA, where D1 dopamine receptor blockade abrogated hypoxic vasodilatation. Experiments on SMA with endothelial denudation revealed a significant contribution of the endothelium, although subendothelial dopamine release dominated. From these results we conclude that endothelial cells and cells of the underlying vascular wall synthesize and release dopamine in an oxygen-regulated manner. In the splanchnic vasculature, this intrinsic non-neuronal dopamine is the dominating vasodilator released upon lowering of oxygen tension.


Subject(s)
Aorta/physiology , Cell Hypoxia , Dopamine/metabolism , Mesenteric Arteries/physiology , Vasodilation , Animals , Aorta/cytology , Aorta/metabolism , Aromatic-L-Amino-Acid Decarboxylases/genetics , Aromatic-L-Amino-Acid Decarboxylases/metabolism , Cells, Cultured , Cyclic AMP/pharmacology , Dopamine Antagonists/pharmacology , Dopamine beta-Hydroxylase/genetics , Dopamine beta-Hydroxylase/metabolism , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Mesenteric Arteries/cytology , Mesenteric Arteries/metabolism , Norepinephrine/metabolism , Rats , Rats, Wistar , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
17.
Cell Tissue Res ; 358(3): 737-48, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25300645

ABSTRACT

Specialized epithelial cells with a tuft of apical microvilli ("brush cells") sense luminal content and initiate protective reflexes in response to potentially harmful substances. They utilize the canonical taste transduction cascade to detect "bitter" substances such as bacterial quorum-sensing molecules. In the respiratory tract, most of these cells are cholinergic and are approached by cholinoceptive sensory nerve fibers. Utilizing two different reporter mouse strains for the expression of choline acetyltransferase (ChAT), we observed intense labeling of a subset of thymic medullary cells. ChAT expression was confirmed by in situ hybridization. These cells showed expression of villin, a brush cell marker protein, and ultrastructurally exhibited lateral microvilli. They did not express neuroendocrine (chromogranin A, PGP9.5) or thymocyte (CD3) markers but rather thymic epithelial (CK8, CK18) markers and were immunoreactive for components of the taste transduction cascade such as Gα-gustducin, transient receptor potential melastatin-like subtype 5 channel (TRPM5), and phospholipase Cß2. Reverse transcription and polymerase chain reaction confirmed the expression of Gα-gustducin, TRPM5, and phospholipase Cß2. Thymic "cholinergic chemosensory cells" were often in direct contact with medullary epithelial cells expressing the nicotinic acetylcholine receptor subunit α3. These cells have recently been identified as terminally differentiated epithelial cells (Hassall's corpuscle-like structures in mice). Contacts with nerve fibers (identified by PGP9.5 and CGRP antibodies), however, were not observed. Our data identify, in the thymus, a previously unrecognized presumptive chemosensitive cell that probably utilizes acetylcholine for paracrine signaling. This cell might participate in intrathymic infection-sensing mechanisms.


Subject(s)
Acetylcholine/metabolism , Chemoreceptor Cells/cytology , Epithelial Cells/cytology , Thymus Gland/cytology , Animals , Chemoreceptor Cells/metabolism , Chemoreceptor Cells/ultrastructure , Choline O-Acetyltransferase/metabolism , Epithelial Cells/metabolism , Epithelial Cells/ultrastructure , Green Fluorescent Proteins/metabolism , Immunohistochemistry , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/metabolism , Receptors, Nicotinic/metabolism , Signal Transduction , Taste , Thymus Gland/innervation
18.
Crit Care ; 18(2): R73, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24731244

ABSTRACT

INTRODUCTION: Ventilator-induced lung injury (VILI) contributes to morbidity and mortality in acute respiratory distress syndrome (ARDS). Particularly pre-injured lungs are susceptible to VILI despite protective ventilation. In a previous study, the endogenous peptide adrenomedullin (AM) protected murine lungs from VILI. We hypothesized that mechanical ventilation (MV) contributes to lung injury and sepsis in pneumonia, and that AM may reduce lung injury and multiple organ failure in ventilated mice with pneumococcal pneumonia. METHODS: We analyzed in mice the impact of MV in established pneumonia on lung injury, inflammation, bacterial burden, hemodynamics and extrapulmonary organ injury, and assessed the therapeutic potential of AM by starting treatment at intubation. RESULTS: In pneumococcal pneumonia, MV increased lung permeability, and worsened lung mechanics and oxygenation failure. MV dramatically increased lung and blood cytokines but not lung leukocyte counts in pneumonia. MV induced systemic leukocytopenia and liver, gut and kidney injury in mice with pneumonia. Lung and blood bacterial burden was not affected by MV pneumonia and MV increased lung AM expression, whereas receptor activity modifying protein (RAMP) 1-3 expression was increased in pneumonia and reduced by MV. Infusion of AM protected against MV-induced lung injury (66% reduction of pulmonary permeability p < 0.01; prevention of pulmonary restriction) and against VILI-induced liver and gut injury in pneumonia (91% reduction of AST levels p < 0.05, 96% reduction of alanine aminotransaminase (ALT) levels p < 0.05, abrogation of histopathological changes and parenchymal apoptosis in liver and gut). CONCLUSIONS: MV paved the way for the progression of pneumonia towards ARDS and sepsis by aggravating lung injury and systemic hyperinflammation leading to liver, kidney and gut injury. AM may be a promising therapeutic option to protect against development of lung injury, sepsis and extrapulmonary organ injury in mechanically ventilated individuals with severe pneumonia.


Subject(s)
Adrenomedullin/therapeutic use , Bronchodilator Agents/therapeutic use , Pneumonia, Pneumococcal/prevention & control , Respiration, Artificial/adverse effects , Sepsis/prevention & control , Ventilator-Induced Lung Injury/prevention & control , Animals , Female , Mice , Mice, Inbred C57BL , Pneumonia, Pneumococcal/pathology , Sepsis/pathology , Ventilator-Induced Lung Injury/pathology
19.
Proc Natl Acad Sci U S A ; 108(23): 9478-83, 2011 Jun 07.
Article in English | MEDLINE | ID: mdl-21606356

ABSTRACT

In the epithelium of the lower airways, a cell type of unknown function has been termed "brush cell" because of a distinctive ultrastructural feature, an apical tuft of microvilli. Morphologically similar cells in the nose have been identified as solitary chemosensory cells responding to taste stimuli and triggering trigeminal reflexes. Here we show that brush cells of the mouse trachea express the receptors (Tas2R105, Tas2R108), the downstream signaling molecules (α-gustducin, phospholipase C(ß2)) of bitter taste transduction, the synthesis and packaging machinery for acetylcholine, and are addressed by vagal sensory nerve fibers carrying nicotinic acetylcholine receptors. Tracheal application of an nAChR agonist caused a reduction in breathing frequency. Similarly, cycloheximide, a Tas2R108 agonist, evoked a drop in respiratory rate, being sensitive to nicotinic receptor blockade and epithelium removal. This identifies brush cells as cholinergic sensors of the chemical composition of the lower airway luminal microenvironment that are directly linked to the regulation of respiration.


Subject(s)
Chemoreceptor Cells/metabolism , Receptors, Nicotinic/metabolism , Respiration , Trachea/physiology , Animals , Choline O-Acetyltransferase/genetics , Choline O-Acetyltransferase/metabolism , Female , Flow Cytometry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Microfilament Proteins/metabolism , Microscopy, Confocal , Microscopy, Electron , Microvilli/metabolism , Microvilli/ultrastructure , Phospholipase C beta/genetics , Phospholipase C beta/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Taste , Trachea/cytology , Trachea/metabolism , Vesicular Acetylcholine Transport Proteins/metabolism
20.
Gen Physiol Biophys ; 33(2): 215-25, 2014.
Article in English | MEDLINE | ID: mdl-24177018

ABSTRACT

Both adrenomedullin and calcitonin gene-related peptide (CGRP) regulate vascular tone in the heart, being cardioprotective in hypoxia. Additionally, adrenomedullin exhibits antiproliferative and antiapoptotic functions in the myocardium, while CGRP exerts positive chronotropic effect. Their actions are mediated through the specific G protein-coupled receptor, CRLR, whose ligand affinity is determined by receptor activity modifying proteins RAMP1-3. CGRP binds to the complex formed by CRLR/RAMP1, whereas CRLR/RAMP2 and CRLR/RAMP3 serve as receptors for adrenomedullin. Here, we quantified expression of this signaling system in the rat heart and supplying sensory ganglia (dorsal root ganglia T1-T4 and vagal nodose ganglia) in streptozotocin-induced diabetes. In the course of diabetes, an increase of CRLR mRNA was noticed in the right ventricle 8 weeks and of RAMP3 mRNA in the left ventricle and right atrium 26 weeks after induction of diabetes. Relative expressions of other tested genes were not significantly altered. In the nodose vagal supplying specific cardiac afferents, but not in dorsal root ganglia which provide cardiac pain fibres, a small upregulation of CGRP expression was detected. In summary, the shifts observed in diabetes may favour a trend of a pronounced adrenomedullin signaling. These observations may provide a new possible therapeutic strategy for diabetic cardiomyopathy.


Subject(s)
Adrenomedullin/genetics , Calcitonin Receptor-Like Protein/genetics , Diabetes Mellitus, Experimental/genetics , Ganglia, Sensory/metabolism , Gene Expression Regulation , Myocardium/metabolism , Adrenomedullin/metabolism , Animals , Calcitonin Receptor-Like Protein/metabolism , Diabetes Mellitus, Experimental/pathology , Female , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Wistar , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL