Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Chemistry ; 30(14): e202303295, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38116901

ABSTRACT

Selective cleavage of unstrained (sp3 ) C-C/ C-N bonds under mild conditions is highly challenging due to the higher bond dissociation energy. A visible light mediated metal-free oxidative dehomologation of aryl acetonitriles, primary alcohols and diols to carboxylic acids via organophotocatalyzed C(sp3 )-CN, C(sp3 )-C(OH) bond cleavage is reported. Notably, this methodology was further extended towards selective synthesis of aldehydes via deamination of both primary as well as secondary amines. This mild protocol features wide array of substrate variation with excellent functional group tolerance, preparative-scale synthesis, and operational simplicity. Possible mechanisms for these transformations were demonstrated through a series of control experiments.

2.
Org Biomol Chem ; 22(20): 4172-4178, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38716563

ABSTRACT

The activation and utilization of challenging aliphatic alcohols like methanol and ethanol is a very appealing approach to synthesize valuable organic molecules. Utilization of methanol and ethanol as a coupling partner has emerged as a valuable alternative to synthesize industrially relevant N-heterocycles because they can be easily procured from renewable sources unlike other activated coupling partners which are expensive and also unstable. Herein, a mild and metal-free photocatalytic protocol to synthesize quinazolinones and more challenging benzothiadiazine-1,1-dioxides, which is unprecedented at room temperature, is demonstrated. This methodology showcased broad substrate scope and provided important N-heterocycles more efficiently than the transition metal-based high temperature protocols. An unexplored reactivity with allyl alcohol is observed following the developed protocol. A series of control experiments were carried out to understand the mechanism.

3.
J Org Chem ; 88(16): 11523-11533, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37525430

ABSTRACT

The transformation of ethanol to value-added chemicals has tremendous potential. However, generally, harsh reaction conditions are needed for the functionalization of ethanol due to its high dehydrogenation energy. Herein, a metal-free photo-mediated activation of challenging ethanol and higher aliphatic alcohols for the synthesis of differently functionalized benzimidazoles under mild conditions is disclosed. The interplay of a photocatalyst and a HAT reagent facilitated the activation of aliphatic alcohols. A wide array of diamines with different functional groups were well tolerated, and the protocol was also extended to N-substituted diamines for the synthesis of industrially important benzimidazoles. A probable catalytic cycle was proposed based on various mechanistic studies.

4.
J Org Chem ; 88(14): 10048-10057, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37390049

ABSTRACT

Herein, control transfer hydrogenation (TH) of azoarenes to hydrazo compounds is established employing easy-to-synthesize reusable cobalt catalyst using lower amounts of N2H4·H2O under mild conditions. With this effective methodology, a library of symmetrical and unsymmetrical azoarene derivatives was successfully converted to their corresponding hydrazo derivatives. Further, this protocol was extended to the TH of nitroarenes to amines with good-to-excellent yields. Several kinetic studies along with Hammett studies were carried out to understand the plausible mechanism and the electronic effects in this transformation. This inexpensive catalyst can be recycled up to five times without considerable loss of catalytic activity.

5.
J Org Chem ; 87(13): 8351-8367, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35726206

ABSTRACT

Herein, we report a simple, phosphine-free, and inexpensive catalytic system based on a manganese(II) complex for synthesizing different important N-heterocycles such as quinolines, pyrroles, and pyridines from amino alcohols and ketones. Several control experiments, kinetic studies, and DFT calculations were carried out to support the plausible reaction mechanism. We also detected two potential intermediates in the catalytic cycle using ESI-MS analysis. Based on these studies, a metal-ligand cooperative mechanism was proposed.


Subject(s)
Pyrroles , Quinolines , Catalysis , Kinetics , Manganese , Pyridines
6.
J Org Chem ; 87(9): 5603-5616, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35416045

ABSTRACT

We disclosed a regio-selective C-H and N-H bond functionalization of indolines using alcohols in water via tandem dehydrogenation of N-heterocycles and alcohols. A diverse range of N- and C3-alkylated indolines/indoles were accessed utilizing a new cooperative iridium catalyst. The practical applicability of this methodology was demonstrated by the preparative-scale synthesis and synthesis of a psychoactive drug, N,N-dimethyltryptamine. A catalytic cycle is proposed based on several kinetic experiments, series of control experiments and density functional theory calculations.


Subject(s)
Alcohols , Water , Alcohols/chemistry , Alkylation , Indoles/chemistry
7.
J Org Chem ; 87(1): 628-643, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-34898200

ABSTRACT

Herein, we demonstrated an efficient protocol for reductive alkylation of azides/nitro compounds via a borrowing hydrogen (BH) method. By following this protocol, selective mono- and dialkylated amines were obtained under mild and solvent-free conditions. A series of control experiments and deuterium-labeling experiments were performed to understand this catalytic process. Mechanistic studies suggested that the Ir(III)-H was the active intermediate in this reaction. KIE study revealed that the breaking of the C-H bond of alcohol might be the rate-limiting step. Notably, this solvent-free strategy disclosed a high TON of around 5600. Based on kinetic studies and control experiments, a metal-ligand cooperative mechanism was proposed.

8.
J Org Chem ; 86(9): 6943-6951, 2021 May 07.
Article in English | MEDLINE | ID: mdl-33876639

ABSTRACT

A ReCl(CO)5/MeC(CH2PPh2)3 (L2) system was developed for the C-methylation reactions utilizing methanol and base, following the borrowing hydrogen strategy. Diverse ketones, indoles, and arylacetonitriles underwent mono- and dimethylation selectively up to 99% yield. Remarkably, tandem multiple methylations were also achieved by employing this catalytic system.

9.
J Org Chem ; 85(4): 2775-2784, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-31903762

ABSTRACT

The inexpensive and simple NiBr2/1,10-phenanthroline system-catalyzed synthesis of a series of quinoxalines from both 2-nitroanilines and 1,2-diamines is demonstrated. The reusability test for this system was performed up to the seventh cycle, which afforded good yields of the desired product without losing its reactivity significantly. Notably, during the catalytic reaction, the formation of the heterogeneous Ni-particle was observed, which was characterized by PXRD, XPS, and TEM techniques.

10.
J Org Chem ; 85(17): 11359-11367, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32786628

ABSTRACT

A tandem synthesis of quinazolinones from 2-aminobenzonitriles is demonstrated here by using an aliphatic alcohol-water system. For this transformation, a cheap and easily available cobalt salt and P(CH2CH2PPh2)3 (PP3) ligand were employed. The substrate scope, scalability, and synthesis of natural products exhibited the vitality of this protocol.

11.
Org Biomol Chem ; 18(30): 5891-5896, 2020 08 05.
Article in English | MEDLINE | ID: mdl-32677635

ABSTRACT

The transformation of acyl azide derivatives into N-methylamines was developed using methanol as the C1 source via the one-pot Curtius rearrangement and borrowing hydrogen methodology. Following this protocol, various functionalised N-methylated amines were synthesized using the (NNN)Ru(ii) complex from carboxylic acids via an acyl azide intermediate. Several kinetic studies and DFT calculations were carried out to support the mechanism and also to determine the role of the Ru(ii) complex and base in this transformation.

12.
Org Biomol Chem ; 18(12): 2193-2214, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32134063

ABSTRACT

The construction of new C-C, C-N and C-O bonds by replacing hazardous and waste generating chemicals with alcohols as the greener and sustainable reagents is one of the emerging areas of research. In consequence, the borrowing hydrogen and acceptorless dehydrogenative coupling principles have received significant momentum to synthesize various alkylated molecules and N-heterocycles. In the tandem transformations and multi-component reactions, simple substrates are directly converted to new functionalities or complex molecular systems using a single reaction set-up. In this review, the progress of tandem transformation of nitro, nitrile and azide functionalities as well as multi-component reactions utilizing alcohols is summarised. These transformations lead to the atom-economical synthesis of a wide range of alkylated imines, amines, amides and N-heterocycles such as pyrrole, pyridine, pyrimidine, quinoxaline, etc.

13.
Chemistry ; 22(50): 18147-18155, 2016 Dec 12.
Article in English | MEDLINE | ID: mdl-27797417

ABSTRACT

Catalytic activities of a series of functional bipyridine-based RuII complexes in ß-alkylation of secondary alcohols using primary alcohols were investigated. Bifunctional RuII complex (3 a) bearing 6,6'-dihydroxy-2,2'-bipyridine (6DHBP) ligand exhibited the highest catalytic activity for this reaction. Using significantly lower catalyst loading (0.1 mol %) dehydrogenative carbon-carbon bond formation between numerous aromatic, aliphatic and heteroatom substituted alcohols were achieved with high selectivity. Notably, for the synthesis of ß-alkylated secondary alcohols this protocol is a rare one-pot strategy using a metal-ligand cooperative RuII system. Remarkably, complex 3 a demonstrated the highest reactivity compared to all the reported transition metal complexes in this reaction.

14.
Org Biomol Chem ; 14(46): 10988-10997, 2016 Nov 22.
Article in English | MEDLINE | ID: mdl-27827512

ABSTRACT

The atom economical borrowing hydrogen methodology enables the use of alcohols as alkylating agents for selective C-C bond formation. A bifunctional 2-(2-pyridyl-2-ol)-1,10-phenanthroline (phenpy-OH) based Ru(ii) complex (2) was found to be a highly efficient catalyst for the one-pot ß-alkylation of secondary alcohols with primary alcohols and double alkylation of cyclopentanol with different primary alcohols. Exploiting the metal-ligand cooperativity in complex 2, several aromatic, aliphatic and heteroatom substituted alcohols were selectively cross-coupled in high yields using significantly low catalyst loading (0.1 mol%). An outer-sphere mechanism is proposed for this system as exogenous PPh3 has no significant effect on the rate of the reaction. Notably, this is a rare one-pot strategy for ß-alkylation of secondary alcohols using a bifunctional Ru(ii)-complex. Moreover, this atom-economical methodology displayed the highest cumulative turn over frequency (TOF) among all the reported transition metal complexes in cross coupling of alcohols.

15.
J Am Chem Soc ; 136(25): 8891-4, 2014 Jun 25.
Article in English | MEDLINE | ID: mdl-24896665

ABSTRACT

While the addition of C-H bonds to three-coordinate Ir(I) fragments is a central theme in the field of C-H bond activation, addition to square planar four-coordinate complexes is far less precedented. The dearth of such reactions may be attributed, at least in part, to kinetic factors elucidated in seminal work by Hoffmann. C-H additions to square planar carbonyl complexes in particular are unprecedented, in contrast to the extensive chemistry of oxidative addition of other substrates (e.g., H2, HX) to Vaska's Complex and related species. We report that Bronsted acids will catalyze the addition of the alkynyl C-H bond of phenylacetylene to the pincer complex (PCP)Ir(CO). The reaction occurs to give exclusively the trans-C-H addition product. Our proposed mechanism, based on kinetics and DFT calculations, involves initial protonation of (PCP)Ir(CO) to generate a highly active five-coordinate cationic intermediate, which forms a phenylacetylene adduct that is then deprotonated to give product.

16.
Nat Protoc ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664579

ABSTRACT

Methanol is a key building block in the chemical industry. In recent years, it has been used as a C1 source in various organic transformations in the presence of a transition-metal catalyst. This protocol describes the ruthenium- and cobalt-catalyzed utilization of methanol in different types of methylation reactions and heterocycle synthesis. Initially, we describe the synthesis of tridentate ligands (L1-L3) and their corresponding Ru(II) complexes (Ru-1, -2 and -3) and then detail how to apply these Ru(II) complexes and Co/PP3 (PP3 = P(CH2CH2PPh2)3) in various methanol dehydrogenative coupling reactions. We discuss six types of transformations by using methanol or a methanol/water mixture. The experimental setup for all the catalytic reactions is similar and involves adding all the respective reagents and solvents to an argon-filled pressure tube, which is sealed (by screw cap) and refluxed at the indicated temperature before the desired products are isolated and characterized. The catalytic systems described in this protocol work well for both small-scale and preparative-scale synthesis of various N-methylated amines/amides, C-methylated products and quinazolinones. These catalytic reactions are greener and more sustainable than conventional synthesis methods, with only H2 and/or H2O as by-products, and we evaluate the 'green chemistry metrics' for a typical substrate. The total time required for the catalytic experiments described in this protocol is 16-28 h, and the operation time is 4 h. An average level of expertise in organic synthesis is required to carry out these protocols.

17.
Org Lett ; 26(21): 4486-4491, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38770879

ABSTRACT

The search for efficient molecular hydrogen precursors and their catalytic exploration is necessary for the evolution of catalytic transfer hydrogenation. Methyl formate (MF) having high hydrogen content still remains unexplored for such transformations. Herein, we disclosed a bifunctional Ir(III)-complex catalyzed chemoselective TH protocol for N-heteroarenes and azoarenes using MF. A variety of substrates including ten bioactive molecules have been synthesized under mild reaction conditions. A probable mechanistic pathway was proposed based on control experiments and mechanistic studies.

18.
J Am Chem Soc ; 135(4): 1217-20, 2013 Jan 30.
Article in English | MEDLINE | ID: mdl-23311932

ABSTRACT

Evidence for key σ-complex intermediates in the hydrogenolysis of the iridium-methyl bond of (PONOP)Ir(H)(Me)(+) (1) [PONOP = 2,6-bis(di-tert-butylphosphinito)pyridine] has been obtained. The initially formed η(2)-H(2) complex, 2, was directly observed upon treatment of 1 with H(2), and evidence for reversible formation of a σ-methane complex, 5, was obtained through deuterium scrambling from η(2)-D(2) in 2-d(2) into the methyl group of 2 prior to methane loss. This sequence of reactions was modeled by density functional theory calculations. The transition state for formation of 5 from 2 showed significant shortening of the Ir-H bond for the hydrogen being transferred; no true Ir(V) trihydride intermediate could be located. Barriers to methane loss from 2 were compared to those of 1 and the six-coordinate species (PONOP)Ir(H)(Me)(CO)(+) and (PONOP)Ir(H)(Me)(Cl).


Subject(s)
Hydrogen/chemistry , Iridium/chemistry , Methane/chemistry , Organometallic Compounds/chemistry , Hydrogenation , Molecular Structure , Organometallic Compounds/chemical synthesis , Quantum Theory
19.
J Am Chem Soc ; 135(13): 5127-43, 2013 Apr 03.
Article in English | MEDLINE | ID: mdl-23469859

ABSTRACT

A pincer-ligated iridium complex, (PCP)Ir (PCP = κ(3)-C6H3-2,6-[CH2P(t-Bu)2]2), is found to undergo oxidative addition of C(sp(3))-O bonds of methyl esters (CH3-O2CR'), methyl tosylate (CH3-OTs), and certain electron-poor methyl aryl ethers (CH3-OAr). DFT calculations and mechanistic studies indicate that the reactions proceed via oxidative addition of C-H bonds followed by oxygenate migration, rather than by direct C-O addition. Thus, methyl aryl ethers react via addition of the methoxy C-H bond, followed by α-aryloxide migration to give cis-(PCP)Ir(H)(CH2)(OAr), followed by iridium-to-methylidene hydride migration to give (PCP)Ir(CH3)(OAr). Methyl acetate undergoes C-H bond addition at the carbomethoxy group to give (PCP)Ir(H)[κ(2)-CH2OC(O)Me] which then affords (PCP-CH2)Ir(H)(κ(2)-O2CMe) (6-Me) in which the methoxy C-O bond has been cleaved, and the methylene derived from the methoxy group has migrated into the PCP Cipso-Ir bond. Thermolysis of 6-Me ultimately gives (PCP)Ir(CH3)(κ(2)-O2CR), the net product of methoxy group C-O oxidative addition. Reaction of (PCP)Ir with species of the type ROAr, RO2CMe or ROTs, where R possesses ß-C-H bonds (e.g., R = ethyl or isopropyl), results in formation of (PCP)Ir(H)(OAr), (PCP)Ir(H)(O2CMe), or (PCP)Ir(H)(OTs), respectively, along with the corresponding olefin or (PCP)Ir(olefin) complex. Like the C-O bond oxidative additions, these reactions also proceed via initial activation of a C-H bond; in this case, C-H addition at the ß-position is followed by ß-migration of the aryloxide, carboxylate, or tosylate group. Calculations indicate that the ß-migration of the carboxylate group proceeds via an unusual six-membered cyclic transition state in which the alkoxy C-O bond is cleaved with no direct participation by the iridium center.

20.
Acc Chem Res ; 45(6): 947-58, 2012 Jun 19.
Article in English | MEDLINE | ID: mdl-22584036

ABSTRACT

Methods for the conversion of both renewable and non-petroleum fossil carbon sources to transportation fuels that are both efficient and economically viable could greatly enhance global security and prosperity. Currently, the major route to convert natural gas and coal to liquids is Fischer-Tropsch catalysis, which is potentially applicable to any source of synthesis gas including biomass and nonconventional fossil carbon sources. The major desired products of Fischer-Tropsch catalysis are n-alkanes that contain 9-19 carbons; they comprise a clean-burning and high combustion quality diesel, jet, and marine fuel. However, Fischer-Tropsch catalysis also results in significant yields of the much less valuable C(3) to C(8)n-alkanes; these are also present in large quantities in oil and gas reserves (natural gas liquids) and can be produced from the direct reduction of carbohydrates. Therefore, methods that could disproportionate medium-weight (C(3)-C(8)) n-alkanes into heavy and light n-alkanes offer great potential value as global demand for fuel increases and petroleum reserves decrease. This Account describes systems that we have developed for alkane metathesis based on the tandem operation of catalysts for alkane dehydrogenation and olefin metathesis. As dehydrogenation catalysts, we used pincer-ligated iridium complexes, and we initially investigated Schrock-type Mo or W alkylidene complexes as olefin metathesis catalysts. The interoperability of the catalysts typically represents a major challenge in tandem catalysis. In our systems, the rate of alkane dehydrogenation generally limits the overall reaction rate, whereas the lifetime of the alkylidene complexes at the relatively high temperatures required to obtain practical dehydrogenation rates (ca. 125 -200 °C) limits the total turnover numbers. Accordingly, we have focused on the development and use of more active dehydrogenation catalysts and more stable olefin-metathesis catalysts. We have used thermally stable solid metal oxides as the olefin-metathesis catalysts. Both the pincer complexes and the alkylidene complexes have been supported on alumina via adsorption through basic para-substituents. This process does not significantly affect catalyst activity, and in some cases it increases both the catalyst lifetime and the compatibility of the co-catalysts. These molecular catalysts are the first systems that effect alkane metathesis with molecular-weight selectivity, particularly for the conversion of C(n)n-alkanes to C(2n-2)n-alkanes plus ethane. This molecular-weight selectivity offers a critical advantage over the few previously reported alkane metathesis systems. We have studied the factors that determine molecular-weight selectivity in depth, including the isomerization of the olefinic intermediates and the regioselectivity of the pincer-iridium catalyst for dehydrogenation at the terminal position of the n-alkane. Our continuing work centers on the development of co-catalysts with improved interoperability, particularly olefin-metathesis catalysts that are more robust at high temperature and dehydrogenation catalysts that are more active at low temperature. We are also designing dehydrogenation catalysts based on metals other than iridium. Our ongoing mechanistic studies are focused on the apparently complex combination of factors that determine molecular-weight selectivity.

SELECTION OF CITATIONS
SEARCH DETAIL