Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Immunity ; 54(8): 1841-1852.e4, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34246326

ABSTRACT

Antibody titers against SARS-CoV-2 slowly wane over time. Here, we examined how time affects antibody potency. To assess the impact of antibody maturation on durable neutralizing activity against original SARS-CoV-2 and emerging variants of concern (VOCs), we analyzed receptor binding domain (RBD)-specific IgG antibodies in convalescent plasma taken 1-10 months after SARS-CoV-2 infection. Longitudinal evaluation of total RBD IgG and neutralizing antibody revealed declining total antibody titers but improved neutralization potency per antibody to original SARS-CoV-2, indicative of antibody response maturation. Neutralization assays with authentic viruses revealed that early antibodies capable of neutralizing original SARS-CoV-2 had limited reactivity toward B.1.351 (501Y.V2) and P.1 (501Y.V3) variants. Antibodies from late convalescents exhibited increased neutralization potency to VOCs, suggesting persistence of cross-neutralizing antibodies in plasma. Thus, maturation of the antibody response to SARS-CoV-2 potentiates cross-neutralizing ability to circulating variants, suggesting that declining antibody titers may not be indicative of declining protection.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Antibodies, Monoclonal/immunology , Antibody Specificity , COVID-19/epidemiology , Humans , Immunoglobulin G , Neutralization Tests , SARS-CoV-2/genetics , Viral Load
2.
Proc Natl Acad Sci U S A ; 121(19): e2319400121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38687787

ABSTRACT

During their blood-feeding process, ticks are known to transmit various viruses to vertebrates, including humans. Recent viral metagenomic analyses using next-generation sequencing (NGS) have revealed that blood-feeding arthropods like ticks harbor a large diversity of viruses. However, many of these viruses have not been isolated or cultured, and their basic characteristics remain unknown. This study aimed to present the identification of a difficult-to-culture virus in ticks using NGS and to understand its epidemic dynamics using molecular biology techniques. During routine tick-borne virus surveillance in Japan, an unknown flaviviral sequence was detected via virome analysis of host-questing ticks. Similar viral sequences have been detected in the sera of sika deer and wild boars in Japan, and this virus was tentatively named the Saruyama virus (SAYAV). Because SAYAV did not propagate in any cultured cells tested, single-round infectious virus particles (SRIP) were generated based on its structural protein gene sequence utilizing a yellow fever virus-based replicon system to understand its nationwide endemic status. Seroepidemiological studies using SRIP as antigens have demonstrated the presence of neutralizing antibodies against SAYAV in sika deer and wild boar captured at several locations in Japan, suggesting that SAYAV is endemic throughout Japan. Phylogenetic analyses have revealed that SAYAV forms a sister clade with the Orthoflavivirus genus, which includes important mosquito- and tick-borne pathogenic viruses. This shows that SAYAV evolved into a lineage independent of the known orthoflaviviruses. This study demonstrates a unique approach for understanding the epidemiology of uncultured viruses by combining viral metagenomics and pseudoinfectious viral particles.


Subject(s)
Deer , Flavivirus , Metagenomics , Ticks , Animals , Metagenomics/methods , Japan/epidemiology , Deer/virology , Flavivirus/genetics , Flavivirus/isolation & purification , Flavivirus/classification , Ticks/virology , Phylogeny , Virome/genetics , Virion/genetics , Sus scrofa/virology , High-Throughput Nucleotide Sequencing , Humans , Seroepidemiologic Studies , Genome, Viral
3.
J Virol ; 97(1): e0136622, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36633406

ABSTRACT

The diversity of SARS-CoV-2 mutations raises the possibility of reinfection of individuals previously infected with earlier variants, and this risk is further increased by the emergence of the B.1.1.529 Omicron variant. In this study, we used an in vivo, hamster infection model to assess the potential for individuals previously infected with SARS-CoV-2 to be reinfected with Omicron variant and we also investigated the pathology associated with such infections. Initially, Syrian hamsters were inoculated with a lineage A, B.1.1.7, B.1.351, B.1.617.2 or a subvariant of Omicron, BA.1 strain and then reinfected with the BA.1 strain 5 weeks later. Subsequently, the impact of reinfection with Omicron subvariants (BA.1 and BA.2) in individuals previously infected with the BA.1 strain was examined. Although viral infection and replication were suppressed in both the upper and lower airways, following reinfection, virus-associated RNA was detected in the airways of most hamsters. Viral replication was more strongly suppressed in the lower respiratory tract than in the upper respiratory tract. Consistent amino acid substitutions were observed in the upper respiratory tract of infected hamsters after primary infection with variant BA.1, whereas diverse mutations appeared in hamsters reinfected with the same variant. Histopathology showed no acute pneumonia or disease enhancement in any of the reinfection groups and, in addition, the expression of inflammatory cytokines and chemokines in the airways of reinfected animals was only mildly elevated. These findings are important for understanding the risk of reinfection with new variants of SARS-CoV-2. IMPORTANCE The emergence of SARS-CoV-2 variants and the widespread use of COVID-19 vaccines has resulted in individual differences in immune status against SARS-CoV-2. A decay in immunity over time and the emergence of variants that partially evade the immune response can also lead to reinfection. In this study, we demonstrated that, in hamsters, immunity acquired following primary infection with previous SARS-CoV-2 variants was effective in preventing the onset of pneumonia after reinfection with the Omicron variant. However, viral infection and multiplication in the upper respiratory tract were still observed after reinfection. We also showed that more diverse nonsynonymous mutations appeared in the upper respiratory tract of reinfected hamsters that had acquired immunity from primary infection. This hamster model reveals the within-host evolution of SARS-CoV-2 and its pathology after reinfection, and provides important information for countermeasures against diversifying SARS-CoV-2 variants.


Subject(s)
COVID-19 , Reinfection , Animals , Cricetinae , Mesocricetus , RNA, Viral , SARS-CoV-2/genetics
4.
Emerg Infect Dis ; 28(2): 436-439, 2022 02.
Article in English | MEDLINE | ID: mdl-35075999

ABSTRACT

Oz virus is a novel thogotovirus isolated from ticks that causes lethal infection in mice. We conducted serosurveillance of Oz virus infection among humans and wild mammals in Japan using virus-neutralization tests and ELISAs. Results showed that Oz virus may be naturally infecting humans and other mammalian hosts.


Subject(s)
Thogotovirus , Ticks , Animals , Japan/epidemiology , Mammals , Mice , Zoonoses
5.
J Infect Chemother ; 28(7): 971-974, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35184976

ABSTRACT

Corticosteroids are widely used to treat severe COVID-19, but in immunocompromised individuals, who are susceptible to persistent infection, long term corticosteroid use may delay viral clearance. We present a case of prolonged SARS-CoV-2 infection in a man with significantly impaired B-cell immunity due to non-Hodgkin lymphoma which had been treated with rituximab. SARS-CoV-2 shedding persisted, despite treatment with remdesivir. Viral sequencing confirmed the persistence of the same viral strain, ruling out the possibility of reinfection. Although SARS-CoV-2 IgG, IgA and IgM remained negative throughout the treatment period, after reduction of the corticosteroid dose, PCR became negative. Long-term corticosteroid treatment, especially in immunocompromised individuals, may result in suppression of cell-mediated immunity and prolonged SARS-CoV-2 infection.


Subject(s)
COVID-19 Drug Treatment , Antibodies, Viral , Humans , Immunocompromised Host , Male , Rituximab/adverse effects , SARS-CoV-2
6.
Emerg Infect Dis ; 27(4): 1068-1076, 2021 04.
Article in English | MEDLINE | ID: mdl-33754983

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tickborne infectious disease caused by SFTS virus (SFTSV). We report 7 cases of spontaneous fatal SFTS in felines. Necropsies revealed characteristic lesions, including necrotizing lymphadenitis in 5 cases and necrotizing splenitis and SFTSV-positive blastic lymphocytes in all cases. We detected hemorrhagic lesions in the gastrointestinal tract in 6 cases and lungs in 3 cases, suggesting a more severe clinical course of SFTS in felids than in humans. We noted necrotic or ulcerative foci in the gastrointestinal tract in 3 cases, the lung in 2 cases, and the liver in 4 cases. We clarified that blastic lymphocytes are predominant targets of SFTSV and involved in induction of necrotic foci. We also found that thymic epithelial cells were additional targets of SFTSV. These results provide insights for diagnosing feline SFTS during pathological examination and demonstrate the similarity of feline and human SFTS cases.


Subject(s)
Bunyaviridae Infections , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Tick-Borne Diseases , Animals , Autopsy , Cats , Humans , Japan
7.
J Virol ; 93(21)2019 11 01.
Article in English | MEDLINE | ID: mdl-31375588

ABSTRACT

Feline infectious peritonitis (FIP) is one of the most important infectious diseases in cats and is caused by feline coronavirus (FCoV). Tissue culture-adapted type I FCoV shows reduced FIP induction in experimental infections, which complicates the understanding of FIP pathogenesis caused by type I FCoV. We previously found that the type I FCoV strain C3663 efficiently induces FIP in specific-pathogen-free cats through the naturally infectious route. In this study, we employed a bacterial artificial chromosome-based reverse genetics system to gain more insights into FIP caused by the C3633 strain. We successfully generated recombinant virus (rC3663) from Fcwf-4 cells transfected with infectious cDNA that showed growth kinetics similar to those shown by the parental virus. Next, we constructed a reporter C3663 virus carrying the nanoluciferase (Nluc) gene to measure viral replication with high sensitivity. The inhibitory effects of different compounds against rC3663-Nluc could be measured within 24 h postinfection. Furthermore, we found that A72 cells derived from canine fibroblasts permitted FCoV replication without apparent cytopathic effects. Thus, our reporter virus is useful for uncovering the infectivity of type I FCoV in different cell lines, including canine-derived cells. Surprisingly, we uncovered aberrant viral RNA transcription of rC3663 in A72 cells. Overall, we succeeded in obtaining infectious cDNA clones derived from type I FCoV that retained its virulence. Our recombinant FCoVs are powerful tools for increasing our understanding of the viral life cycle and pathogenesis of FIP-inducing type I FCoV.IMPORTANCE Feline coronavirus (FCoV) is one of the most significant coronaviruses, because this virus induces feline infectious peritonitis (FIP), which is a lethal disease in cats. Tissue culture-adapted type I FCoV often loses pathogenicity, which complicates research on type I FCoV-induced feline infectious peritonitis (FIP). Since we previously found that type I FCoV strain C3663 efficiently induces FIP in specific-pathogen-free cats, we established a reverse genetics system for the C3663 strain to obtain recombinant viruses in the present study. By using a reporter C3663 virus, we were able to examine the inhibitory effect of 68 compounds on C3663 replication in Fcwf-4 cells and infectivity in a canine-derived cell line. Interestingly, one canine cell line, A72, permitted FCoV replication but with low efficiency and aberrant viral gene expression.


Subject(s)
Coronavirus Infections/virology , Coronavirus, Feline/pathogenicity , DNA, Complementary/genetics , Feline Infectious Peritonitis/virology , RNA, Viral/genetics , Virulence/genetics , Virus Replication , Animals , Cats , Coronavirus Infections/genetics , Coronavirus Infections/pathology , Coronavirus, Feline/genetics , Coronavirus, Feline/growth & development , Dogs , Feline Infectious Peritonitis/genetics , Feline Infectious Peritonitis/pathology , Genome, Viral , Madin Darby Canine Kidney Cells
8.
Virus Genes ; 52(6): 858-862, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27369429

ABSTRACT

In an epidemiological study of ferret coronaviruses (FRCoVs), novel FRCoV strains (Saitama-1 and Aichi-1) were detected by reverse transcription-polymerase chain reaction (RT-PCR) and nucleotide sequence analysis of partial RNA-dependent RNA polymerase (RdRp) genes. Phylogenetic analysis indicated that these strains belonged to different clusters from other FRCoV strains. Next, the nucleotide sequence of the 3'-terminal region of Saitama-1 (8271 bases) strain was determined and compared with those of the other FRCoVs, indicating that the Saitama-1 strain differed from the previously reported MSU-1 and MSU-2 strains in the regions encoding spike (S) protein, nucleocapsid, and open reading frame 7b. Furthermore, the results of SimPlot analysis indicated that FRCoV (MSU-2 strain) emerged via a recombination event of S protein between the MSU-1 and Saitama-1 strains. This mechanism is similar to that responsible for the emergence of type II feline coronavirus. This information will be useful for understanding the pathogenesis of FRCoV in ferrets.


Subject(s)
Coronavirus Infections/veterinary , Coronavirus, Feline/genetics , Ferrets/virology , Recombination, Genetic , Amino Acid Sequence , Animals , Gene Order , Open Reading Frames , Phylogeny , RNA, Viral , Sequence Analysis, DNA
9.
Jpn J Infect Dis ; 77(3): 169-173, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38171846

ABSTRACT

Some lyssaviruses, including the rabies virus (RABV), cause lethal neurological symptoms in humans. However, the efficacy of commercial vaccines has only been evaluated against RABV. To assess cross-reactivity among lyssaviruses, including RABV, sera from rabbits inoculated with human and animal RABV vaccines and polyclonal antibodies from rabbits immunized with expression plasmids of the glycoproteins of all 18 lyssaviruses were prepared, and cross-reactivity was evaluated via virus-neutralization tests using Duvenhage lyssavirus (DUVV), European bat lyssavirus-1 (EBLV-1), Mokola lyssavirus (MOKV), Lagos bat lyssavirus (LBV), and RABV. The sera from rabbits inoculated with RABV vaccines showed cross-reactivity with EBLV-1 and DUVV, both belonging to phylogroup I. However, reactivity with MOKV and LBV in phylogroup II was notably limited or below the detection level. Next, we compared the cross-reactivity of the polyclonal antibodies against all lyssavirus glycoproteins. Polyclonal antibodies had high virus-neutralization titers against the same phylogroup but not different phylogroups. Our findings indicate that a new vaccine should be developed for pre- and post-exposure prophylaxis against lyssaviral infections.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Cross Reactions , Glycoproteins , Lyssavirus , Neutralization Tests , Animals , Lyssavirus/immunology , Rabbits , Antibodies, Viral/immunology , Antibodies, Viral/blood , Glycoproteins/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Humans , Rhabdoviridae Infections/immunology , Rhabdoviridae Infections/prevention & control
10.
J Vet Med Sci ; 86(1): 128-134, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38092389

ABSTRACT

Rabies is a fatal zoonotic, neurological disease caused by rabies lyssavirus (RABV) and other lyssaviruses. In this study, we established novel serological neutralizing tests (NT) based on vesicular stomatitis virus pseudotypes possessing all 18 known lyssavirus glycoproteins. Applying this system to comparative NT against rabbit sera immunized with current RABV vaccines, we showed that the current RABV vaccines fail to elicit sufficient neutralizing antibodies against lyssaviruses other than to those in phylogroup I. Furthermore, comparative NT against rabbit antisera for 18 lyssavirus glycoproteins showed glycoproteins of some lyssaviruses elicited neutralizing antibodies against a broad range of lyssaviruses. This novel testing system will be useful to comprehensively detect antibodies against lyssaviruses and evaluate their cross-reactivities for developing a future broad-protective vaccine.


Subject(s)
Lyssavirus , Rabies Vaccines , Rabies virus , Rabies , Animals , Rabbits , Rabies/veterinary , Antibodies, Viral , Viral Pseudotyping/veterinary , Antibodies, Neutralizing , Glycoproteins , Zoonoses
11.
J Vet Med Sci ; 85(3): 329-333, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36653150

ABSTRACT

Severe fever with thrombocytopenia syndrome virus (SFTSV) causes lethal hemorrhagic diseases in human, cats, and dogs. Several human cases involving direct transmission of SFTSV from diseased animals have been reported. Therefore, rapid diagnosis in veterinary clinics is important for preventing animal-to-human transmission. Previously, we developed a simplified reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assay for human that does not require RNA extraction for detecting the SFTSV genome. In this study, we improved the simplified RT-LAMP assay for cats by introducing a dried reaction reagent and investigated the applicability of this method for diagnosing SFTS in cats. SFTSV RNA was detected in 11 of 12 cats naturally infected with SFTSV by RT-LAMP assay using both liquid and dried reagents. The RT-LAMP assay using liquid and dried reagents was also applicable to the detection of SFTSV genes 3-4 days after challenge in cats experimentally infected with SFTSV. The minimum copy number of SFTSV genes for 100% detection using the RT-LAMP assay with liquid and dried reagents was 4.3 × 104 and 9.6 × 104 copies/mL, respectively. Although the RT-LAMP assay using the dried reagent was less sensitive than that using the liquid reagent, it was sufficiently sensitive to detect SFTSV genes in cats with acute-phase SFTS. As the simplified RT-LAMP assay using a dried reagent enables detection of SFTSV genes more readily than the assay using a liquid reagent, it is applicable for use in veterinary clinics.


Subject(s)
Cat Diseases , Dog Diseases , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Cats , Animals , Humans , Dogs , Severe Fever with Thrombocytopenia Syndrome/veterinary , Indicators and Reagents , RNA, Viral/genetics , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods , Nucleic Acid Amplification Techniques/veterinary , Phlebovirus/genetics
12.
One Health ; 17: 100588, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37359748

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to circulate in humans since its emergence in 2019. While infection in humans continues, numerous spillover events to at least 32 animal species, including companion and zoo animals, have been reported. Since dogs and cats are highly susceptible to SARS-CoV-2 and have direct contact with their owners and other household members, it is important to know the prevalence of SARS-CoV-2 in dogs and cats. Here, we established an ELISA to detect serum antibodies against the receptor-binding domain and the ectodomain of the SARS-CoV-2 spike and nucleocapsid proteins. Using this ELISA, we assessed seroprevalence in 488 dog serum samples and 355 cat serum samples that were collected during the early pandemic period (between May and June of 2020) and 312 dog serum samples and 251 cat serum samples that were collected during the mid-pandemic period (between October 2021 and January 2022). We found that two dog serum samples (0.41%) collected in 2020, one cat serum sample (0.28%) collected in 2020, and four cat serum samples (1.6%) collected in 2021 were positive for antibodies against SARS-CoV-2. No dog serum samples collected in 2021 were positive for these antibodies. We conclude that the seroprevalence of SARS-CoV-2 antibodies in dogs and cats in Japan is low, suggesting that these animals are not a major SARS-CoV-2 reservoir.

13.
Nat Commun ; 14(1): 4198, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37452031

ABSTRACT

SARS-CoV-2 Omicron subvariants have evolved to evade receptor-binding site (RBS) antibodies that exist in diverse individuals as public antibody clones. We rationally selected RBS antibodies resilient to mutations in emerging Omicron subvariants. Y489 was identified as a site of virus vulnerability and a common footprint of broadly neutralizing antibodies against the subvariants. Multiple Y489-binding antibodies were encoded by public clonotypes and additionally recognized F486, potentially accounting for the emergence of Omicron subvariants harboring the F486V mutation. However, a subclass of antibodies broadly neutralized BA.4/BA.5 variants via hydrophobic binding sites of rare clonotypes along with high mutation-resilience under escape mutation screening. A computationally designed antibody based on one of the Y489-binding antibodies, NIV-10/FD03, was able to bind XBB with any 486 mutation and neutralized XBB.1.5. The structural basis for the mutation-resilience of this Y489-binding antibody group may provide important insights into the design of therapeutics resistant to viral escape.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Antibodies, Viral , Binding Sites , Broadly Neutralizing Antibodies , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus/genetics
14.
iScience ; 26(5): 106694, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37124417

ABSTRACT

Evaluating the serum cross-neutralization responses after breakthrough infection with various SARS-CoV-2 variants provides valuable insight for developing variant-proof COVID-19 booster vaccines. However, fairly comparing the impact of breakthrough infections with distinct epidemic timing on cross-neutralization responses, influenced by the exposure interval between vaccination and infection, is challenging. To compare the impact of pre-Omicron to Omicron breakthrough infection, we estimated the effects on cross-neutralizing responses by the exposure interval using Bayesian hierarchical modeling. The saturation time required to generate saturated cross-neutralization responses differed by variant, with variants more antigenically distant from the ancestral strain requiring longer intervals of 2-4 months. The breadths of saturated cross-neutralization responses to Omicron lineages were comparable in pre-Omicron and Omicron breakthrough infections. Our results highlight the importance of vaccine dosage intervals of 4 months or longer, regardless of the antigenicity of the exposed antigen, to maximize the breadth of serum cross-neutralization covering SARS-CoV-2 Omicron lineages.

15.
Viruses ; 15(10)2023 09 29.
Article in English | MEDLINE | ID: mdl-37896805

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection among pets owned by coronavirus disease 2019 (COVID-19) patients has been reported around the world. However, how often the animals are exposed to SARS-CoV-2 by their owners is still unclear. We have collected swab samples from COVID-19 patients' pets and performed real-time RT-PCR to detect the viral genome. In total, 8 of 53 dogs (15.1%) and 5 of 34 cats (14.7%) tested positive for the SARS-CoV-2 N gene. The result of a virus neutralization (VN) test also showed VN antibodies in four cats and six dogs. Our results indicate that the virus often passed from infected owners to their pets, which then excreted the virus despite having no or mild clinical signs.


Subject(s)
COVID-19 , Cat Diseases , Dog Diseases , Humans , Animals , Dogs , Cats , SARS-CoV-2/genetics , Genome, Viral , Serologic Tests , Specimen Handling
16.
Viruses ; 15(12)2023 12 11.
Article in English | MEDLINE | ID: mdl-38140644

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne zoonotic disease caused by the SFTS virus (SFTSV). In Thailand, three human cases of SFTS were reported in 2019 and 2020, but there was no report of SFTSV infection in animals. Our study revealed that at least 16.6% of dogs in Thailand were seropositive for SFTSV infection, and the SFTSV-positive dogs were found in several districts in Thailand. Additionally, more than 70% of the serum samples collected at one shelter possessed virus-neutralization antibodies against SFTSV and the near-complete genome sequences of the SFTSV were determined from one dog in the shelter. The dog SFTSV was genetically close to those from Thailand and Chinese patients and belonged to genotype J3. These results indicated that SFTSV has already spread among animals in Thailand.


Subject(s)
Bunyaviridae Infections , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Tick-Borne Diseases , Animals , Humans , Dogs , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Severe Fever with Thrombocytopenia Syndrome/veterinary , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/veterinary , Seroepidemiologic Studies , Thailand/epidemiology , Antibodies, Viral , Phlebovirus/genetics
17.
Glob Health Med ; 5(1): 5-14, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36865900

ABSTRACT

As coronavirus disease 2019 (COVID-19) outbreaks in healthcare facilities are a serious public health concern, we performed a case-control study to investigate the risk of COVID-19 infection in healthcare workers. We collected data on participants' sociodemographic characteristics, contact behaviors, installation status of personal protective equipment, and polymerase chain reaction testing results. We also collected whole blood and assessed seropositivity using the electrochemiluminescence immunoassay and microneutralization assay. In total, 161 (8.5%) of 1,899 participants were seropositive between August 3 and November 13, 2020. Physical contact (adjusted odds ratio 2.4, 95% confidence interval 1.1-5.6) and aerosol-generating procedures (1.9, 1.1-3.2) were associated with seropositivity. Using goggles (0.2, 0.1-0.5) and N95 masks (0.3, 0.1-0.8) had a preventive effect. Seroprevalence was higher in the outbreak ward (18.6%) than in the COVID-19 dedicated ward (1.4%). Results showed certain specific risk behaviors of COVID-19; proper infection prevention practices reduced these risks.

18.
J Vet Med Sci ; 84(7): 992-1000, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35675975

ABSTRACT

In Japan, hepatitis E virus (HEV) causes hepatitis in humans through the consumption of raw or undercooked meat, including game meat. In the present study, nationwide surveillance of HEV infection among a total of 5,557 wild animals, including 15 species, was conducted in Japan. The prevalence of anti-HEV antibodies in wild boar was 12.4%, with higher positive rates in big boars (over 50 kg, 18.4%) than in small individuals (less than 30 kg, 5.3%). Furthermore, HEV RNA was more frequently detected in piglets than in older boars. Interestingly, the detection of HEV among wildlife by ELISA and RT-PCR suggested that HEV infection in Sika deer was a very rare event, and that there was no HEV infection among wild animals except for wild boar, Sika deer and Japanese monkeys. In conclusion, wild boar, especially piglets, are at high risk of HEV infection, while other wild animals showed less risk or no risk of HEV transmission.


Subject(s)
Animals, Wild , Hepatitis E , Animals , Deer , Haplorhini , Hepatitis E/epidemiology , Hepatitis E/transmission , Hepatitis E/veterinary , Hepatitis E virus/physiology , Japan/epidemiology , RNA, Viral/genetics , Sus scrofa , Swine
19.
J Vet Med Sci ; 84(8): 1142-1145, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35793949

ABSTRACT

In Japan, the first patient with severe fever with thrombocytopenia syndrome was reported in Yamaguchi in 2012. To understand the severe fever with thrombocytopenia syndrome virus (SFTSV) infection in this region, a retrospective surveillance in sika deer and wild boars in Yamaguchi was conducted using a virus-neutralizing (VN) test. The result revealed that 510 of the 789 sika deer and 199 of the 517 wild boars were positive for anti-SFTSV antibodies. Interestingly, seroprevalence in sika deer increased significantly from 2010-2013 to 2015-2020. The SFTSV gene was detected in one of the 229 serum samples collected from sika deer, but not from wild boars. In conclusion, SFTSV had spread among wild animals before 2012 and expanded gradually around 2013-2015 in Yamaguchi.


Subject(s)
Deer , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Swine Diseases , Animals , Japan/epidemiology , Phlebovirus/genetics , Retrospective Studies , Risk Assessment , Seroepidemiologic Studies , Severe Fever with Thrombocytopenia Syndrome/epidemiology , Severe Fever with Thrombocytopenia Syndrome/veterinary , Sus scrofa , Swine
20.
Jpn J Infect Dis ; 75(3): 325-327, 2022 May 24.
Article in English | MEDLINE | ID: mdl-34853194

ABSTRACT

Ferrets are animals that are known to be susceptible to influenza A virus (IAV) infection. To evaluate the risk of IAV transmission from diseased ferrets to humans, a survey was performed to detect specific antibodies against the H1, H3, H5, and H7 subtypes of IAV. Using enzyme-linked immunosorbent assay for hemagglutinin proteins, we found a high positive rate for the H1 (24.1%) and H3 (5.2%) subtypes. The results were confirmed by a virus neutralization test for representative antibody-positive serum samples. We also detected hemagglutinin and neuraminidase genes in two ferrets showing acute respiratory disease and whose owner was diagnosed with IAV infection; a human H1N1pdm virus was isolated from one of these ferrets. Our findings suggest that attention should be paid to IAV infection from humans to ferrets and vice versa.


Subject(s)
Influenza A virus , Influenza, Human , Orthomyxoviridae Infections , Animals , Antibodies, Viral , Ferrets/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinins , Humans , Influenza A virus/genetics , Orthomyxoviridae Infections/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL