Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
J Cell Sci ; 137(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38587100

ABSTRACT

During development, neurons achieve a stereotyped neuron type-specific morphology, which relies on dynamic support by microtubules (MTs). An important player is the augmin complex (hereafter augmin), which binds to existing MT filaments and recruits the γ-tubulin ring complex (γ-TuRC), to form branched MTs. In cultured neurons, augmin is important for neurite formation. However, little is known about the role of augmin during neurite formation in vivo. Here, we have revisited the role of mammalian augmin in culture and then turned towards the class four Drosophila dendritic arborization (c4da) neurons. We show that MT density is maintained through augmin in cooperation with the γ-TuRC in vivo. Mutant c4da neurons show a reduction of newly emerging higher-order dendritic branches and in turn also a reduced number of their characteristic space-filling higher-order branchlets. Taken together, our data reveal a cooperative function for augmin with the γ-TuRC in forming enough MTs needed for the appropriate differentiation of morphologically complex dendrites in vivo.


Subject(s)
Dendrites , Drosophila Proteins , Microtubule-Associated Proteins , Microtubules , Animals , Microtubules/metabolism , Dendrites/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Drosophila melanogaster/metabolism , Tubulin/metabolism , Drosophila/metabolism , Humans , Neurons/metabolism , Neurons/cytology
2.
J Cell Sci ; 134(14)2021 07 15.
Article in English | MEDLINE | ID: mdl-34283237

ABSTRACT

Centrioles are microtubule-based cylindrical structures that assemble the centrosome and template the formation of cilia. The proximal part of centrioles is associated with the pericentriolar material, a protein scaffold from which microtubules are nucleated. This activity is mediated by the γ-tubulin ring complex (γTuRC) whose central role in centrosomal microtubule organization has been recognized for decades. However, accumulating evidence suggests that γTuRC activity at this organelle is neither restricted to the pericentriolar material nor limited to microtubule nucleation. Instead, γTuRC is found along the entire centriole cylinder, at subdistal appendages, and inside the centriole lumen, where its canonical function as a microtubule nucleator might be supplemented or replaced by a function in microtubule anchoring and centriole stabilization, respectively. In this Opinion, we discuss recent insights into the expanded repertoire of γTuRC activities at centrioles and how distinct subpopulations of γTuRC might act in concert to ensure centrosome and cilia biogenesis and function, ultimately supporting cell proliferation, differentiation and homeostasis. We propose that the classical view of centrosomal γTuRC as a pericentriolar material-associated microtubule nucleator needs to be revised.


Subject(s)
Centrioles , Tubulin , Bandages , Centrosome , Humans , Microtubules , Toes
3.
Cereb Cortex ; 30(6): 3781-3799, 2020 05 18.
Article in English | MEDLINE | ID: mdl-32043120

ABSTRACT

Neural cell adhesion molecule 2 (NCAM2) is involved in the development and plasticity of the olfactory system. Genetic data have implicated the NCAM2 gene in neurodevelopmental disorders including Down syndrome and autism, although its role in cortical development is unknown. Here, we show that while overexpression of NCAM2 in hippocampal neurons leads to minor alterations, its downregulation severely compromises dendritic architecture, leading to an aberrant phenotype including shorter dendritic trees, retraction of dendrites, and emergence of numerous somatic neurites. Further, our data reveal alterations in the axonal tree and deficits in neuronal polarization. In vivo studies confirm the phenotype and reveal an unexpected role for NCAM2 in cortical migration. Proteomic and cell biology experiments show that NCAM2 molecules exert their functions through a protein complex with the cytoskeletal-associated proteins MAP2 and 14-3-3γ and ζ. We provide evidence that NCAM2 depletion results in destabilization of the microtubular network and reduced MAP2 signal. Our results demonstrate a role for NCAM2 in dendritic formation and maintenance, and in neural polarization and migration, through interaction of NCAM2 with microtubule-associated proteins.


Subject(s)
14-3-3 Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Neural Cell Adhesion Molecules/genetics , Neuronal Plasticity/genetics , Animals , Cell Movement/genetics , Cell Polarity/genetics , HEK293 Cells , Hippocampus , Humans , Mice , Microtubules , Neural Cell Adhesion Molecules/metabolism , Neurons
4.
J Cell Sci ; 130(2): 406-419, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27852835

ABSTRACT

Regulation of the γ-tubulin ring complex (γTuRC) through targeting and activation restricts nucleation of microtubules to microtubule-organizing centers (MTOCs), aiding in the assembly of ordered microtubule arrays. However, the mechanistic basis of this important regulation remains poorly understood. Here, we show that, in human cells, γTuRC integrity, determined by the presence of γ-tubulin complex proteins (GCPs; also known as TUBGCPs) 2-6, is a prerequisite for interaction with the targeting factor NEDD1, impacting on essentially all γ-tubulin-dependent functions. Recognition of γTuRC integrity is mediated by MZT1, which binds not only to the GCP3 subunit as previously shown, but cooperatively also to other GCPs through a conserved hydrophobic motif present in the N-termini of GCP2, GCP3, GCP5 and GCP6. MZT1 knockdown causes severe cellular defects under conditions that leave γTuRC intact, suggesting that the essential function of MZT1 is not in γTuRC assembly. Instead, MZT1 specifically binds fully assembled γTuRC to enable interaction with NEDD1 for targeting, and with the CM1 domain of CDK5RAP2 for stimulating nucleation activity. Thus, MZT1 is a 'priming factor' for γTuRC that allows spatial regulation of nucleation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Tubulin/metabolism , Centrosome/metabolism , HeLa Cells , Humans , Models, Biological , Mutation/genetics , Protein Binding , Protein Subunits/metabolism
5.
J Cell Sci ; 125(Pt 19): 4445-56, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-23132930

ABSTRACT

The function of microtubules depends on their arrangement into highly ordered arrays. Spatio-temporal control over the formation of new microtubules and regulation of their properties are central to the organization of these arrays. The nucleation of new microtubules requires γ-tubulin, an essential protein that assembles into multi-subunit complexes and is found in all eukaryotic organisms. However, the way in which γ-tubulin complexes are regulated and how this affects nucleation and, potentially, microtubule behavior, is poorly understood. γ-tubulin has been found in complexes of various sizes but several lines of evidence suggest that only large, ring-shaped complexes function as efficient microtubule nucleators. Human γ-tubulin ring complexes (γTuRCs) are composed of γ-tubulin and the γ-tubulin complex components (GCPs) 2, 3, 4, 5 and 6, which are members of a conserved protein family. Recent work has identified additional unrelated γTuRC subunits, as well as a large number of more transient γTuRC interactors. In this Commentary, we discuss the regulation of γTuRC-dependent microtubule nucleation as a key mechanism of microtubule organization. Specifically, we focus on the regulatory roles of the γTuRC subunits and interactors and present an overview of other mechanisms that regulate γTuRC-dependent microtubule nucleation and organization.


Subject(s)
Microtubules/metabolism , Tubulin/metabolism , Animals , Humans , Models, Biological , Protein Binding , Protein Processing, Post-Translational , Tubulin/chemistry
6.
Nat Cell Biol ; 8(2): 137-47, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16378099

ABSTRACT

The gamma-tubulin ring complex (gammaTuRC) is a large multi-protein complex that is required for microtubule nucleation from the centrosome. Here, we show that the GCP-WD protein (originally named NEDD1) is the orthologue of the Drosophila Dgrip71WD protein, and is a subunit of the human gammaTuRC. GCP-WD has the properties of an attachment factor for the gammaTuRC: depletion or inhibition of GCP-WD results in loss of the gammaTuRC from the centrosome, abolishing centrosomal microtubule nucleation, although the gammaTuRC is intact and able to bind to microtubules. GCP-WD depletion also blocks mitotic chromatin-mediated microtubule nucleation, resulting in failure of spindle assembly. Mitotic phosphorylation of GCP-WD is required for association of gamma-tubulin with the spindle, separately from association with the centrosome. Our results indicate that GCP-WD broadly mediates targeting of the gammaTuRC to sites of microtubule nucleation and to the mitotic spindle, which is essential for spindle formation.


Subject(s)
Centrosome/metabolism , Chromatin/metabolism , Microtubules/metabolism , Tubulin/metabolism , Antigens/metabolism , Cell Line , HeLa Cells , Humans , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/drug effects , Mitosis/physiology , Mutation/genetics , Nocodazole/pharmacology , Phosphorylation , Protein Binding , RNA Interference , RNA, Small Interfering/genetics , Spindle Apparatus/metabolism , Transfection , Tubulin/genetics
7.
Curr Biol ; 33(5): R180-R182, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36917938

ABSTRACT

Identification of a membrane structure, termed the 'centriculum', in Caenorhabditis elegans embryos challenges the textbook view of the centrosome - a major microtubule organizing center in animal cells - as an organelle that lacks a surrounding membrane.


Subject(s)
Caenorhabditis elegans Proteins , Animals , Caenorhabditis elegans Proteins/genetics , Microtubules , Centrosome , Microtubule-Organizing Center , Cytoskeleton , Caenorhabditis elegans
8.
Nat Commun ; 14(1): 289, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36702836

ABSTRACT

Organization of microtubule arrays requires spatio-temporal regulation of the microtubule nucleator γ-tubulin ring complex (γTuRC) at microtubule organizing centers (MTOCs). MTOC-localized adapter proteins are thought to recruit and activate γTuRC, but the molecular underpinnings remain obscure. Here we show that at interphase centrosomes, rather than adapters, the microtubule polymerase ch-TOG (also named chTOG or CKAP5) ultimately controls γTuRC recruitment and activation. ch-TOG co-assembles with γTuRC to stimulate nucleation around centrioles. In the absence of ch-TOG, γTuRC fails to localize to these sites, but not the centriole lumen. However, whereas some ch-TOG is stably bound at subdistal appendages, it only transiently associates with PCM. ch-TOG's dynamic behavior requires its tubulin-binding TOG domains and a C-terminal region involved in localization. In addition, ch-TOG also promotes nucleation from the Golgi. Thus, at interphase centrosomes stimulation of nucleation and γTuRC attachment are mechanistically coupled through transient recruitment of ch-TOG, and ch-TOG's nucleation-promoting activity is not restricted to centrosomes.


Subject(s)
Microtubule-Associated Proteins , Tubulin , Humans , Tubulin/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Microtubule-Organizing Center/metabolism , Centrosome/metabolism , Interphase
9.
Nat Commun ; 14(1): 2434, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37105961

ABSTRACT

The activity of dynein is regulated by a number of adaptors that mediate its interaction with dynactin, effectively activating the motor complex while also connecting it to different cargos. The regulation of adaptors is consequently central to dynein physiology but remains largely unexplored. We now describe that one of the best-known dynein adaptors, BICD2, is effectively activated through phosphorylation. In G2, phosphorylation of BICD2 by CDK1 promotes its interaction with PLK1. In turn, PLK1 phosphorylation of a single residue in the N-terminus of BICD2 results in a structural change that facilitates the interaction with dynein and dynactin, allowing the formation of active motor complexes. Moreover, modified BICD2 preferentially interacts with the nucleoporin RanBP2 once RanBP2 has been phosphorylated by CDK1. BICD2 phosphorylation is central for dynein recruitment to the nuclear envelope, centrosome tethering to the nucleus and centrosome separation in the G2 and M phases of the cell cycle. This work reveals adaptor activation through phosphorylation as crucial for the spatiotemporal regulation of dynein activity.


Subject(s)
Dyneins , Microtubule-Associated Proteins , Dyneins/metabolism , Microtubule-Associated Proteins/metabolism , Dynactin Complex/metabolism , Phosphorylation , Cell Cycle , Centrosome/metabolism
10.
J Cell Sci ; 123(Pt 18): 3039-46, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20736305

ABSTRACT

Proper assembly and function of a bipolar mitotic spindle is crucial for faithful bidirectional chromosome segregation during cell division. In animal cells, the two poles of the mitotic spindle are organized by centrosomes, microtubule-organizing structures composed of a pair of centrioles surrounded by the so-called pericentriolar material. Proteomic studies have revealed a large number of centrosome proteins, but many remain uncharacterized. Here, we characterize SPICE, a protein that localizes to spindle microtubules in mitosis and to centrioles throughout the cell cycle. RNAi-mediated depletion of SPICE in human cells impairs centriole duplication and causes severe mitotic defects. SPICE depletion compromises spindle architecture, spindle pole integrity and chromosome congression, even in cells in which centriole duplication has occurred. Our data suggest that SPICE is an important dual-function regulator required for centriole duplication and for proper bipolar spindle formation and chromosome congression in mitosis.


Subject(s)
Centrioles/metabolism , Chromosome Segregation , Microtubule-Associated Proteins/metabolism , Mitosis , Cell Line , Centrioles/genetics , Humans , Microtubule-Associated Proteins/genetics , Protein Binding , Spindle Apparatus/genetics , Spindle Apparatus/metabolism
11.
Front Cell Dev Biol ; 10: 867870, 2022.
Article in English | MEDLINE | ID: mdl-35309944

ABSTRACT

Microtubules are dynamic, filamentous polymers composed of α- and ß-tubulin. Arrays of microtubules that have a specific polarity and distribution mediate essential processes such as intracellular transport and mitotic chromosome segregation. Microtubule arrays are generated with the help of microtubule organizing centers (MTOC). MTOCs typically combine two principal activities, the de novo formation of microtubules, termed nucleation, and the immobilization of one of the two ends of microtubules, termed anchoring. Nucleation is mediated by the γ-tubulin ring complex (γTuRC), which, in cooperation with its recruitment and activation factors, provides a template for α- and ß-tubulin assembly, facilitating formation of microtubule polymer. In contrast, the molecules and mechanisms that anchor newly formed microtubules at MTOCs are less well characterized. Here we discuss the mechanistic challenges underlying microtubule anchoring, how this is linked with the molecular activities of known and proposed anchoring factors, and what consequences defective microtubule anchoring has at the cellular and organismal level.

12.
Elife ; 112022 02 08.
Article in English | MEDLINE | ID: mdl-35133277

ABSTRACT

Adenylosuccinate lyase (ADSL) functions in de novo purine synthesis (DNPS) and the purine nucleotide cycle. ADSL deficiency (ADSLD) causes numerous neurodevelopmental pathologies, including microcephaly and autism spectrum disorder. ADSLD patients have normal serum purine nucleotide levels but exhibit accumulation of dephosphorylated ADSL substrates, S-Ado, and SAICAr, the latter being implicated in neurotoxic effects through unknown mechanisms. We examined the phenotypic effects of ADSL depletion in human cells and their relation to phenotypic outcomes. Using specific interventions to compensate for reduced purine levels or modulate SAICAr accumulation, we found that diminished AMP levels resulted in increased DNA damage signaling and cell cycle delays, while primary ciliogenesis was impaired specifically by loss of ADSL or administration of SAICAr. ADSL-deficient chicken and zebrafish embryos displayed impaired neurogenesis and microcephaly. Neuroprogenitor attrition in zebrafish embryos was rescued by pharmacological inhibition of DNPS, but not increased nucleotide concentration. Zebrafish also displayed phenotypes commonly linked to ciliopathies. Our results suggest that both reduced purine levels and impaired DNPS contribute to neurodevelopmental pathology in ADSLD and that defective ciliogenesis may influence the ADSLD phenotypic spectrum.


Subject(s)
Adenylosuccinate Lyase/deficiency , Adenylosuccinate Lyase/metabolism , Autistic Disorder/metabolism , Neurogenesis , Purine-Pyrimidine Metabolism, Inborn Errors/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/metabolism , Animals , Autism Spectrum Disorder/metabolism , Cell Cycle , Cell Cycle Proteins/metabolism , Cell Line , Chickens/metabolism , Ciliopathies/metabolism , DNA Damage , Humans , Microcephaly/metabolism , Microtubule-Associated Proteins/metabolism , Phenotype , Phosphoproteins/metabolism , Purines/metabolism , Ribonucleotides/metabolism , Zebrafish/metabolism
13.
Cell Rep ; 41(7): 111642, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36384111

ABSTRACT

The primary cilium, a microtubule-based sensory organelle, undergoes cycles of assembly and disassembly that govern the cell cycle progression critical to cell proliferation and differentiation. Although cilia assembly has been studied extensively, the molecular mechanisms underlying cilia disassembly are less well understood. Here, we uncover a γ-tubulin ring complex (γ-TuRC)-dependent pathway that promotes cilia disassembly and thereby prevents cilia formation. We further demonstrate that Kif2A, a kinesin motor that bears microtubule-depolymerizing activity, is recruited to the cilium basal body in a γ-TuRC-dependent manner. Our mechanistic analyses show that γ-TuRC specifically recruits Kif2A via the GCP2 subunit and its binding partner Mzt2. Hence, despite the long-standing view that γ-TuRC acts mainly as a microtubule template, we illustrate that its functional heterogeneity at the basal body facilitates both microtubule nucleation and Kif2A recruitment-mediated regulation of ciliogenesis, ensuring cell cycle progression.


Subject(s)
Microtubule-Associated Proteins , Tubulin , Tubulin/metabolism , Microtubule-Associated Proteins/metabolism , Cilia/metabolism , Microtubule-Organizing Center/metabolism , Microtubules/metabolism
14.
Dev Neurobiol ; 81(3): 273-283, 2021 04.
Article in English | MEDLINE | ID: mdl-32324945

ABSTRACT

The highly polarized morphology of neurons is crucial for their function and involves formation of two distinct types of cellular extensions, the axonal and dendritic compartments. An important effector required for the morphogenesis and maintenance and thus the identity of axons and dendrites is the microtubule cytoskeleton. Microtubules in axons and dendrites are arranged with distinct polarities, to allow motor-dependent, compartment-specific sorting of cargo. Despite the importance of the microtubule cytoskeleton in neurons, the molecular mechanisms that generate the intricate compartment-specific microtubule configurations remain largely obscure. Work in other cell types has identified microtubule nucleation, the de novo formation of microtubules, and its spatio-temporal regulation as essential for the proper organization of the microtubule cytoskeleton. Whereas regulation of microtubule nucleation usually involves microtubule organizing centers such as the centrosome, neurons seem to rely largely on decentralized nucleation mechanisms. In this review, I will discuss recent advances in deciphering nucleation mechanisms in neurons, how they contribute to the arrangement of microtubules with specific polarities, and how this affects neuron morphogenesis. While this work has shed some light on these important processes, we are far from a comprehensive understanding. Thus, to provide a coherent model, my discussion will include both well-established mechanisms and mechanisms with more limited supporting data. Finally, I will also highlight important outstanding questions for future investigation.


Subject(s)
Microtubules , Neurons , Axons/metabolism , Centrosome , Cytoskeleton , Microtubules/metabolism , Neurons/metabolism
15.
Trends Cell Biol ; 31(11): 876-887, 2021 11.
Article in English | MEDLINE | ID: mdl-34183231

ABSTRACT

Mutations in genes encoding centriolar or ciliary proteins cause diseases collectively known as 'ciliopathies'. Interestingly, the Human Phenotype Ontology database lists numerous disorders that display clinical features reminiscent of ciliopathies but do not involve defects in the centriole-cilium proteome. Instead, defects in different cellular compartments may impair cilia indirectly and cause additional, nonciliopathy phenotypes. This phenotypic heterogeneity, perhaps combined with the field's centriole-cilium-centric view, may have hindered the recognition of ciliary contributions. Identifying these diseases and dissecting how the underlying gene mutations impair cilia not only will add to our understanding of cilium assembly and function but also may open up new therapeutic avenues.


Subject(s)
Ciliopathies , Centrioles/metabolism , Cilia/genetics , Cilia/metabolism , Ciliopathies/genetics , Ciliopathies/metabolism , Humans , Mutation/genetics , Phenotype
16.
Nat Commun ; 12(1): 6042, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34654813

ABSTRACT

Centriole biogenesis and maintenance are crucial for cells to generate cilia and assemble centrosomes that function as microtubule organizing centers (MTOCs). Centriole biogenesis and MTOC function both require the microtubule nucleator γ-tubulin ring complex (γTuRC). It is widely accepted that γTuRC nucleates microtubules from the pericentriolar material that is associated with the proximal part of centrioles. However, γTuRC also localizes more distally and in the centriole lumen, but the significance of these findings is unclear. Here we identify spatially and functionally distinct subpopulations of centrosomal γTuRC. Luminal localization is mediated by augmin, which is linked to the centriole inner scaffold through POC5. Disruption of luminal localization impairs centriole integrity and interferes with cilium assembly. Defective ciliogenesis is also observed in γTuRC mutant fibroblasts from a patient suffering from microcephaly with chorioretinopathy. These results identify a non-canonical role of augmin-γTuRC in the centriole lumen that is linked to human disease.


Subject(s)
Cell Cycle Proteins/isolation & purification , Cell Cycle Proteins/metabolism , Centrioles/metabolism , Microtubule-Associated Proteins/isolation & purification , Microtubule-Associated Proteins/metabolism , Microtubule-Organizing Center/metabolism , Animals , Carrier Proteins/metabolism , Cell Cycle Proteins/ultrastructure , Cell Line , Centrioles/ultrastructure , Centrosome/metabolism , Centrosome/ultrastructure , Cilia , Female , Humans , Male , Mice , Microtubule-Associated Proteins/ultrastructure , Microtubule-Organizing Center/ultrastructure , Microtubules/metabolism , Neurons
17.
Elife ; 102021 08 24.
Article in English | MEDLINE | ID: mdl-34427181

ABSTRACT

Microtubules that assemble the mitotic spindle are generated by centrosomal nucleation, chromatin-mediated nucleation, and nucleation from the surface of other microtubules mediated by the augmin complex. Impairment of centrosomal nucleation in apical progenitors of the developing mouse brain induces p53-dependent apoptosis and causes non-lethal microcephaly. Whether disruption of non-centrosomal nucleation has similar effects is unclear. Here, we show, using mouse embryos, that conditional knockout of the augmin subunit Haus6 in apical progenitors led to spindle defects and mitotic delay. This triggered massive apoptosis and abortion of brain development. Co-deletion of Trp53 rescued cell death, but surviving progenitors failed to organize a pseudostratified epithelium, and brain development still failed. This could be explained by exacerbated mitotic errors and resulting chromosomal defects including increased DNA damage. Thus, in contrast to centrosomes, augmin is crucial for apical progenitor mitosis, and, even in the absence of p53, for progression of brain development.


Subject(s)
Apoptosis/genetics , Brain/embryology , Microtubule-Associated Proteins/genetics , Neural Stem Cells/metabolism , Tumor Suppressor Protein p53/genetics , Animals , Female , Mice , Microtubule-Associated Proteins/metabolism , Tumor Suppressor Protein p53/metabolism
18.
Methods Mol Biol ; 2101: 163-178, 2020.
Article in English | MEDLINE | ID: mdl-31879904

ABSTRACT

Assaying microtubule nucleation is essential to understand the organization of microtubule networks in any cell type. In this chapter we describe methods for measuring nucleation activity at centrosomes and at mitotic chromatin in cell lines, to study interphase and mitotic microtubule organization, and for measuring non-centrosomal nucleation in cultured primary neurons, to study microtubule organization in the absence of a microtubule organizing center. While a number of different approaches and variations thereof have been reported in the literature, here we aim to keep the methodology as simple as possible and thus accessible to most research laboratories.


Subject(s)
Biological Assay , Cell Nucleus/metabolism , Microtubules/metabolism , Active Transport, Cell Nucleus , Biological Assay/methods , Biomarkers , Cell Line , Fluorescent Antibody Technique , Humans , Microtubules/chemistry , Mitosis , Neurons/metabolism , Protein Binding , Protein Multimerization
19.
Sci Adv ; 6(51)2020 12.
Article in English | MEDLINE | ID: mdl-33355144

ABSTRACT

The microtubule nucleator γ-tubulin ring complex (γTuRC) is essential for the function of microtubule organizing centers such as the centrosome. Since its discovery over two decades ago, γTuRC has evaded in vitro reconstitution and thus detailed structure-function studies. Here, we show that a complex of RuvB-like protein 1 (RUVBL1) and RUVBL2 "RUVBL" controls assembly and composition of γTuRC in human cells. Likewise, RUVBL assembles γTuRC from a minimal set of core subunits in a heterologous coexpression system. RUVBL interacts with γTuRC subcomplexes but is not part of fully assembled γTuRC. Purified, reconstituted γTuRC has nucleation activity and resembles native γTuRC as revealed by its cryo-electron microscopy (cryo-EM) structure at ~4.0-Šresolution. We further use cryo-EM to identify features that determine the intricate, higher-order γTuRC architecture. Our work finds RUVBL as an assembly factor that regulates γTuRC in cells and allows production of recombinant γTuRC for future in-depth mechanistic studies.


Subject(s)
ATPases Associated with Diverse Cellular Activities , Carrier Proteins , DNA Helicases , Microtubules , Tubulin , ATPases Associated with Diverse Cellular Activities/metabolism , Carrier Proteins/metabolism , Cryoelectron Microscopy , DNA Helicases/metabolism , Humans , Microtubule-Organizing Center/metabolism , Microtubules/metabolism , Tubulin/chemistry
20.
Trends Cell Biol ; 28(3): 176-187, 2018 03.
Article in English | MEDLINE | ID: mdl-29173799

ABSTRACT

Despite decades of molecular analysis of the centrosome, an important microtubule-organizing center (MTOC) of animal cells, the molecular basis of microtubule organization remains obscure. A major challenge is the sheer complexity of the interplay of the hundreds of proteins that constitute the centrosome. However, this complexity owes not only to the centrosome's role as a MTOC but also to the requirements of its duplication cycle and to various other functions such as the formation of cilia, the integration of various signaling pathways, and the organization of actin filaments. Thus, rather than using the parts lists to reconstruct the centrosome, we propose to identify the subset of proteins minimally needed to assemble a MTOC and to study this process at non-centrosomal sites.


Subject(s)
Centrosome , Cilia/genetics , Microtubule-Organizing Center , Microtubules/genetics , Animals , Cilia/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL